渐近平坦三流形中的极小平面

IF 1.3 1区 数学 Q1 MATHEMATICS
L. Mazet, H. Rosenberg
{"title":"渐近平坦三流形中的极小平面","authors":"L. Mazet, H. Rosenberg","doi":"10.4310/jdg/1649953568","DOIUrl":null,"url":null,"abstract":"In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\\Sigma$ in $M$ such that $q\\in\\Sigma$ and $T_q\\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Minimal planes in asymptotically flat three-manifolds\",\"authors\":\"L. Mazet, H. Rosenberg\",\"doi\":\"10.4310/jdg/1649953568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\\\\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\\\\Sigma$ in $M$ such that $q\\\\in\\\\Sigma$ and $T_q\\\\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1649953568\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1649953568","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文对Chodosh和Ketover的一个结果进行了改进。我们证明了在不含闭极小曲面的渐近平坦的$3$-流形$M$中,固定M$中的$q\和$T_qM$中一个$2$-平面$V$,在$M$上存在一个适当嵌入的极小平面$\Sigma$,使得$q\in\ Sigma$和$T_q\Sigma=V$。我们还证明了在$M$中固定三个点时,有一个适当嵌入的最小平面穿过这三个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal planes in asymptotically flat three-manifolds
In this paper, we improve a result by Chodosh and Ketover. We prove that, in an asymptotically flat $3$-manifold $M$ that contains no closed minimal surfaces, fixing $q\in M$ and a $2$-plane $V$ in $T_qM$ there is a properly embedded minimal plane $\Sigma$ in $M$ such that $q\in\Sigma$ and $T_q\Sigma=V$. We also prove that fixing three points in $M$ there is a properly embedded minimal plane passing through these three points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信