{"title":"(LCS) n -流形上的Yamabe孤子","authors":"Soumendu Roy, S. Dey, A. Bhattacharyya","doi":"10.1080/1726037X.2020.1868100","DOIUrl":null,"url":null,"abstract":"Abstract The object of the present paper is to study some properties of (LCS) n -manifolds whose metric is Yamabe soliton. We establish some characterization of (LCS) n -manifolds when the soliton becomes steady. Next we have studied some certain curvature conditions of (LCS) n -manifolds admitting Yamabe solitons. Lastly we construct a 3-dimensional (LCS) n -manifold satisfying the results.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"18 1","pages":"261 - 279"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2020.1868100","citationCount":"15","resultStr":"{\"title\":\"Yamabe Solitons On (LCS) n -Manifolds\",\"authors\":\"Soumendu Roy, S. Dey, A. Bhattacharyya\",\"doi\":\"10.1080/1726037X.2020.1868100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The object of the present paper is to study some properties of (LCS) n -manifolds whose metric is Yamabe soliton. We establish some characterization of (LCS) n -manifolds when the soliton becomes steady. Next we have studied some certain curvature conditions of (LCS) n -manifolds admitting Yamabe solitons. Lastly we construct a 3-dimensional (LCS) n -manifold satisfying the results.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"18 1\",\"pages\":\"261 - 279\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2020.1868100\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2020.1868100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2020.1868100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15
摘要
摘要本文研究了度规为Yamabe孤子的(LCS) n流形的一些性质。建立了n -流形在孤子稳定时的一些表征。其次,我们研究了允许Yamabe孤子的(LCS) n -流形的某些曲率条件。最后构造了一个满足上述结果的三维n流形。
Abstract The object of the present paper is to study some properties of (LCS) n -manifolds whose metric is Yamabe soliton. We establish some characterization of (LCS) n -manifolds when the soliton becomes steady. Next we have studied some certain curvature conditions of (LCS) n -manifolds admitting Yamabe solitons. Lastly we construct a 3-dimensional (LCS) n -manifold satisfying the results.