{"title":"近亲复合体和几乎扁平的环","authors":"Nesa Eshagh Nimvari, S. O. Faramarzi","doi":"10.30495/JME.V0I0.1504","DOIUrl":null,"url":null,"abstract":"Let $(R,\\mathfrak{m})$ is a $d$-dimensional Noetherian local ring and $T$ be a commutative strict algebra with unit element $1_T$ over $R$ such that $\\mathfrak{m}T\\neq T$. We define almost exact sequences of $T$-modules and characterize almost flat $T$-modules. Moreover, we define almost (faithfully) flat homomorphisms between $R$-algebras $T$ and $W$, where $W$ has similar properties that $T$ has as an $R$-algebra. By almost (faithfully) flat homomorphisms and almost flat modules, we investigate Cousin complexes of $T$ and $W$-modules. Finally, for a finite filtration of length less than $d$ of $\\mathrm{Spec}(T)$, $\\mathcal{F}=(F_i)_{i\\geq0}$ such that admits a $T$-module $X$, we show that $^I\\mathrm{E}_{p,q}^2:=\\mathrm{Tor}_p^T \\left(M,\\mathrm{H}^{d-q}\\left(\\mathcal{C}_T\\left(\\mathcal{F},X\\right)\\right)\\right) \\stackrel{p}{\\Rightarrow}\\mathrm{H}_{p+q}(\\mathrm{Tot}(\\mathcal{T}))$ and $^{II}\\mathrm{E}_{p,q}^2:=\\mathrm{H}^{d-p}\\left(\\mathrm{Tor}_q^T\\left(M,\\mathcal{C}_T\\left(\\mathcal{F},X\\right)\\right)\\right) \\stackrel{p}{\\Rightarrow}\\mathrm{H}_{p+q}(\\mathrm{Tot}(\\mathcal{T}))$, where $M$ is an any flat $T$-module and as result we show that $^I\\mathrm{E}_{p,q}^2$ and $^{II}\\mathrm{E}_{p,q}^2$ are almost zero, when $M$ is almost flat.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cousin Complexes and almost flat rings\",\"authors\":\"Nesa Eshagh Nimvari, S. O. Faramarzi\",\"doi\":\"10.30495/JME.V0I0.1504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(R,\\\\mathfrak{m})$ is a $d$-dimensional Noetherian local ring and $T$ be a commutative strict algebra with unit element $1_T$ over $R$ such that $\\\\mathfrak{m}T\\\\neq T$. We define almost exact sequences of $T$-modules and characterize almost flat $T$-modules. Moreover, we define almost (faithfully) flat homomorphisms between $R$-algebras $T$ and $W$, where $W$ has similar properties that $T$ has as an $R$-algebra. By almost (faithfully) flat homomorphisms and almost flat modules, we investigate Cousin complexes of $T$ and $W$-modules. Finally, for a finite filtration of length less than $d$ of $\\\\mathrm{Spec}(T)$, $\\\\mathcal{F}=(F_i)_{i\\\\geq0}$ such that admits a $T$-module $X$, we show that $^I\\\\mathrm{E}_{p,q}^2:=\\\\mathrm{Tor}_p^T \\\\left(M,\\\\mathrm{H}^{d-q}\\\\left(\\\\mathcal{C}_T\\\\left(\\\\mathcal{F},X\\\\right)\\\\right)\\\\right) \\\\stackrel{p}{\\\\Rightarrow}\\\\mathrm{H}_{p+q}(\\\\mathrm{Tot}(\\\\mathcal{T}))$ and $^{II}\\\\mathrm{E}_{p,q}^2:=\\\\mathrm{H}^{d-p}\\\\left(\\\\mathrm{Tor}_q^T\\\\left(M,\\\\mathcal{C}_T\\\\left(\\\\mathcal{F},X\\\\right)\\\\right)\\\\right) \\\\stackrel{p}{\\\\Rightarrow}\\\\mathrm{H}_{p+q}(\\\\mathrm{Tot}(\\\\mathcal{T}))$, where $M$ is an any flat $T$-module and as result we show that $^I\\\\mathrm{E}_{p,q}^2$ and $^{II}\\\\mathrm{E}_{p,q}^2$ are almost zero, when $M$ is almost flat.\",\"PeriodicalId\":43745,\"journal\":{\"name\":\"Journal of Mathematical Extension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Extension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30495/JME.V0I0.1504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V0I0.1504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let $(R,\mathfrak{m})$ is a $d$-dimensional Noetherian local ring and $T$ be a commutative strict algebra with unit element $1_T$ over $R$ such that $\mathfrak{m}T\neq T$. We define almost exact sequences of $T$-modules and characterize almost flat $T$-modules. Moreover, we define almost (faithfully) flat homomorphisms between $R$-algebras $T$ and $W$, where $W$ has similar properties that $T$ has as an $R$-algebra. By almost (faithfully) flat homomorphisms and almost flat modules, we investigate Cousin complexes of $T$ and $W$-modules. Finally, for a finite filtration of length less than $d$ of $\mathrm{Spec}(T)$, $\mathcal{F}=(F_i)_{i\geq0}$ such that admits a $T$-module $X$, we show that $^I\mathrm{E}_{p,q}^2:=\mathrm{Tor}_p^T \left(M,\mathrm{H}^{d-q}\left(\mathcal{C}_T\left(\mathcal{F},X\right)\right)\right) \stackrel{p}{\Rightarrow}\mathrm{H}_{p+q}(\mathrm{Tot}(\mathcal{T}))$ and $^{II}\mathrm{E}_{p,q}^2:=\mathrm{H}^{d-p}\left(\mathrm{Tor}_q^T\left(M,\mathcal{C}_T\left(\mathcal{F},X\right)\right)\right) \stackrel{p}{\Rightarrow}\mathrm{H}_{p+q}(\mathrm{Tot}(\mathcal{T}))$, where $M$ is an any flat $T$-module and as result we show that $^I\mathrm{E}_{p,q}^2$ and $^{II}\mathrm{E}_{p,q}^2$ are almost zero, when $M$ is almost flat.