杠杆分类器:另看支持向量机

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yixin Han, Jun Yu, Nan Zhang, Cheng Meng, Ping Ma, Wenxuan Zhong, Changliang Zou
{"title":"杠杆分类器:另看支持向量机","authors":"Yixin Han, Jun Yu, Nan Zhang, Cheng Meng, Ping Ma, Wenxuan Zhong, Changliang Zou","doi":"10.5705/ss.202023.0124","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is a popular classifier known for accuracy, flexibility, and robustness. However, its intensive computation has hindered its application to large-scale datasets. In this paper, we propose a new optimal leverage classifier based on linear SVM under a nonseparable setting. Our classifier aims to select an informative subset of the training sample to reduce data size, enabling efficient computation while maintaining high accuracy. We take a novel view of SVM under the general subsampling framework and rigorously investigate the statistical properties. We propose a two-step subsampling procedure consisting of a pilot estimation of the optimal subsampling probabilities and a subsampling step to construct the classifier. We develop a new Bahadur representation of the SVM coefficients and derive unconditional asymptotic distribution and optimal subsampling probabilities without giving the full sample. Numerical results demonstrate that our classifiers outperform the existing methods in terms of estimation, computation, and prediction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leverage Classifier: Another Look at Support Vector Machine\",\"authors\":\"Yixin Han, Jun Yu, Nan Zhang, Cheng Meng, Ping Ma, Wenxuan Zhong, Changliang Zou\",\"doi\":\"10.5705/ss.202023.0124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machine (SVM) is a popular classifier known for accuracy, flexibility, and robustness. However, its intensive computation has hindered its application to large-scale datasets. In this paper, we propose a new optimal leverage classifier based on linear SVM under a nonseparable setting. Our classifier aims to select an informative subset of the training sample to reduce data size, enabling efficient computation while maintaining high accuracy. We take a novel view of SVM under the general subsampling framework and rigorously investigate the statistical properties. We propose a two-step subsampling procedure consisting of a pilot estimation of the optimal subsampling probabilities and a subsampling step to construct the classifier. We develop a new Bahadur representation of the SVM coefficients and derive unconditional asymptotic distribution and optimal subsampling probabilities without giving the full sample. Numerical results demonstrate that our classifiers outperform the existing methods in terms of estimation, computation, and prediction.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202023.0124\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202023.0124","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)是一种流行的分类器,以其准确性、灵活性和鲁棒性而闻名。然而,其密集的计算阻碍了其在大规模数据集中的应用。在本文中,我们提出了一种新的基于线性SVM的不可分离设置下的最优杠杆分类器。我们的分类器旨在选择训练样本的信息子集,以减少数据大小,在保持高精度的同时实现高效计算。我们在一般的子采样框架下对支持向量机提出了一种新的观点,并严格研究了其统计特性。我们提出了一种两步子采样过程,包括最优子采样概率的导频估计和构造分类器的子采样步骤。我们开发了SVM系数的新的Bahadur表示,并在不给出全样本的情况下导出了无条件渐近分布和最优子采样概率。数值结果表明,我们的分类器在估计、计算和预测方面优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leverage Classifier: Another Look at Support Vector Machine
Support vector machine (SVM) is a popular classifier known for accuracy, flexibility, and robustness. However, its intensive computation has hindered its application to large-scale datasets. In this paper, we propose a new optimal leverage classifier based on linear SVM under a nonseparable setting. Our classifier aims to select an informative subset of the training sample to reduce data size, enabling efficient computation while maintaining high accuracy. We take a novel view of SVM under the general subsampling framework and rigorously investigate the statistical properties. We propose a two-step subsampling procedure consisting of a pilot estimation of the optimal subsampling probabilities and a subsampling step to construct the classifier. We develop a new Bahadur representation of the SVM coefficients and derive unconditional asymptotic distribution and optimal subsampling probabilities without giving the full sample. Numerical results demonstrate that our classifiers outperform the existing methods in terms of estimation, computation, and prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信