{"title":"用Karman–Pohlhausen方法计算边界层的新方法","authors":"V. A. Kot","doi":"10.29235/1561-8323-2023-67-2-144-155","DOIUrl":null,"url":null,"abstract":"Several efficient computational schemes, providing the attainment of minimum errors in determining the main parameters of a boundary layer, are presented. The new trinomial polynomial obtained for definition of the velocity profile in the boundary layer much exceeds in accuracy all the known analogous solutions. A scheme of finding a fairly exact solution in the form of the half-sum of the classical Pohlhausen polynomials of the third and fourth degrees is proposed. This solution possesses better approximation properties compared to those of the initial profiles. A high-accuracy solution has been obtained for the velocity profile in the form the velocity profile curve being almost coincident with the exact solution. The friction stress error is . This solution yields an almost exact value of friction stress with very small calculation errors of the displacement thickness (0.12 %) and the form parameter (0.12 %).","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New approaches to calculation of the boundary layer by the Karman–Pohlhausen method\",\"authors\":\"V. A. Kot\",\"doi\":\"10.29235/1561-8323-2023-67-2-144-155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several efficient computational schemes, providing the attainment of minimum errors in determining the main parameters of a boundary layer, are presented. The new trinomial polynomial obtained for definition of the velocity profile in the boundary layer much exceeds in accuracy all the known analogous solutions. A scheme of finding a fairly exact solution in the form of the half-sum of the classical Pohlhausen polynomials of the third and fourth degrees is proposed. This solution possesses better approximation properties compared to those of the initial profiles. A high-accuracy solution has been obtained for the velocity profile in the form the velocity profile curve being almost coincident with the exact solution. The friction stress error is . This solution yields an almost exact value of friction stress with very small calculation errors of the displacement thickness (0.12 %) and the form parameter (0.12 %).\",\"PeriodicalId\":41825,\"journal\":{\"name\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2023-67-2-144-155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-2-144-155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
New approaches to calculation of the boundary layer by the Karman–Pohlhausen method
Several efficient computational schemes, providing the attainment of minimum errors in determining the main parameters of a boundary layer, are presented. The new trinomial polynomial obtained for definition of the velocity profile in the boundary layer much exceeds in accuracy all the known analogous solutions. A scheme of finding a fairly exact solution in the form of the half-sum of the classical Pohlhausen polynomials of the third and fourth degrees is proposed. This solution possesses better approximation properties compared to those of the initial profiles. A high-accuracy solution has been obtained for the velocity profile in the form the velocity profile curve being almost coincident with the exact solution. The friction stress error is . This solution yields an almost exact value of friction stress with very small calculation errors of the displacement thickness (0.12 %) and the form parameter (0.12 %).