{"title":"多相和均相体系中罗丹明B的光催化降解","authors":"Asfandyar Khan, Zsolt Valicsek, O. Horváth","doi":"10.33927/hjic-2021-02","DOIUrl":null,"url":null,"abstract":"This study focuses on the photocatalytic degradation of Rhodamine B (RhB) in heterogeneous and homogeneous photo-Fenton reactions. In the heterogeneous system, iron(II) doped copper ferrite CuII(x)FeII(1-x)FeIII2O4 nanoparticles (NPs) prepared in our previous work were employed as potential catalysts. The photodegradation of RhB was carried out in a quartz cuvette located in a diode array spectrometer. The experimental conditions such as pH, NPs dosage and H2O2 dosage with regard to the photocatalytic degradation of RhB were optimized to be 7.5, 500 mg/L and 8.9x10-2 mol/L, respectively. In addition, visible light-induced photodegradation of RhB was also carried out by using \\ch{H2O2} over a wide pH range in the absence of heterogeneous photocatalysts. It was observed that the reaction rate significantly increased above pH 10, resulting in a faster rate of degradation of RhB, which may be attributed to the deprotonation of hydrogen peroxide. Furthermore, the potential antibacterial property of such catalysts against the Gram-negative bacterium Vibrio fischeri in a bioluminescence assay yielded inhibition activities of more than 60% in all cases.","PeriodicalId":43118,"journal":{"name":"Hungarian Journal of Industry and Chemistry","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photocatalytic Degradation of Rhodamine B in Heterogeneous and Homogeneous Systems\",\"authors\":\"Asfandyar Khan, Zsolt Valicsek, O. Horváth\",\"doi\":\"10.33927/hjic-2021-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the photocatalytic degradation of Rhodamine B (RhB) in heterogeneous and homogeneous photo-Fenton reactions. In the heterogeneous system, iron(II) doped copper ferrite CuII(x)FeII(1-x)FeIII2O4 nanoparticles (NPs) prepared in our previous work were employed as potential catalysts. The photodegradation of RhB was carried out in a quartz cuvette located in a diode array spectrometer. The experimental conditions such as pH, NPs dosage and H2O2 dosage with regard to the photocatalytic degradation of RhB were optimized to be 7.5, 500 mg/L and 8.9x10-2 mol/L, respectively. In addition, visible light-induced photodegradation of RhB was also carried out by using \\\\ch{H2O2} over a wide pH range in the absence of heterogeneous photocatalysts. It was observed that the reaction rate significantly increased above pH 10, resulting in a faster rate of degradation of RhB, which may be attributed to the deprotonation of hydrogen peroxide. Furthermore, the potential antibacterial property of such catalysts against the Gram-negative bacterium Vibrio fischeri in a bioluminescence assay yielded inhibition activities of more than 60% in all cases.\",\"PeriodicalId\":43118,\"journal\":{\"name\":\"Hungarian Journal of Industry and Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hungarian Journal of Industry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33927/hjic-2021-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33927/hjic-2021-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Photocatalytic Degradation of Rhodamine B in Heterogeneous and Homogeneous Systems
This study focuses on the photocatalytic degradation of Rhodamine B (RhB) in heterogeneous and homogeneous photo-Fenton reactions. In the heterogeneous system, iron(II) doped copper ferrite CuII(x)FeII(1-x)FeIII2O4 nanoparticles (NPs) prepared in our previous work were employed as potential catalysts. The photodegradation of RhB was carried out in a quartz cuvette located in a diode array spectrometer. The experimental conditions such as pH, NPs dosage and H2O2 dosage with regard to the photocatalytic degradation of RhB were optimized to be 7.5, 500 mg/L and 8.9x10-2 mol/L, respectively. In addition, visible light-induced photodegradation of RhB was also carried out by using \ch{H2O2} over a wide pH range in the absence of heterogeneous photocatalysts. It was observed that the reaction rate significantly increased above pH 10, resulting in a faster rate of degradation of RhB, which may be attributed to the deprotonation of hydrogen peroxide. Furthermore, the potential antibacterial property of such catalysts against the Gram-negative bacterium Vibrio fischeri in a bioluminescence assay yielded inhibition activities of more than 60% in all cases.