Chittaranjan Paital, Saroj Kumar, M. Muni, D. Parhi, P. R. Dhal
{"title":"基于改进的灰狼优化控制器的轮式移动机器人智能体导航","authors":"Chittaranjan Paital, Saroj Kumar, M. Muni, D. Parhi, P. R. Dhal","doi":"10.1108/ijius-06-2020-0023","DOIUrl":null,"url":null,"abstract":"PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Navigation of a wheeled mobile robotic agent using modified grey wolf optimization controller\",\"authors\":\"Chittaranjan Paital, Saroj Kumar, M. Muni, D. Parhi, P. R. Dhal\",\"doi\":\"10.1108/ijius-06-2020-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-06-2020-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-06-2020-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Navigation of a wheeled mobile robotic agent using modified grey wolf optimization controller
PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.