多面体近似不能检测到的高同伦群的元

IF 0.7 3区 数学 Q2 MATHEMATICS
John K. Aceti, Jeremy Brazas
{"title":"多面体近似不能检测到的高同伦群的元","authors":"John K. Aceti, Jeremy Brazas","doi":"10.2140/pjm.2023.322.221","DOIUrl":null,"url":null,"abstract":"When non-trivial local structures are present in a topological space $X$, a common approach to characterizing the isomorphism type of the $n$-th homotopy group $\\pi_n(X,x_0)$ is to consider the image of $\\pi_n(X,x_0)$ in the $n$-th \\v{C}ech homotopy group $\\check{\\pi}_n(X,x_0)$ under the canonical homomorphism $\\Psi_{n}:\\pi_n(X,x_0)\\to \\check{\\pi}_n(X,x_0)$. The subgroup $\\ker(\\Psi_n)$ is the obstruction to this tactic as it consists of precisely those elements of $\\pi_n(X,x_0)$, which cannot be detected by polyhedral approximations to $X$. In this paper, we use higher dimensional analogues of Spanier groups to characterize $\\ker(\\Psi_n)$. In particular, we prove that if $X$ is paracompact, Hausdorff, and $LC^{n-1}$, then $\\ker(\\Psi_n)$ is equal to the $n$-th Spanier group of $X$. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that $\\Psi_{n}$ is an isomorphism.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elements of higher homotopy groups undetectable by polyhedral approximation\",\"authors\":\"John K. Aceti, Jeremy Brazas\",\"doi\":\"10.2140/pjm.2023.322.221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When non-trivial local structures are present in a topological space $X$, a common approach to characterizing the isomorphism type of the $n$-th homotopy group $\\\\pi_n(X,x_0)$ is to consider the image of $\\\\pi_n(X,x_0)$ in the $n$-th \\\\v{C}ech homotopy group $\\\\check{\\\\pi}_n(X,x_0)$ under the canonical homomorphism $\\\\Psi_{n}:\\\\pi_n(X,x_0)\\\\to \\\\check{\\\\pi}_n(X,x_0)$. The subgroup $\\\\ker(\\\\Psi_n)$ is the obstruction to this tactic as it consists of precisely those elements of $\\\\pi_n(X,x_0)$, which cannot be detected by polyhedral approximations to $X$. In this paper, we use higher dimensional analogues of Spanier groups to characterize $\\\\ker(\\\\Psi_n)$. In particular, we prove that if $X$ is paracompact, Hausdorff, and $LC^{n-1}$, then $\\\\ker(\\\\Psi_n)$ is equal to the $n$-th Spanier group of $X$. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that $\\\\Psi_{n}$ is an isomorphism.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.221\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

当拓扑空间$X$中存在非平凡局部结构时,刻画第$n$-个同伦群$\pi_n(X,X_0)$的同构类型的一种常见方法是考虑第$n$个同伦组$\pi_n(X,X_0)${C}ech正则同态$\Psi_{n}:\pi_n(X,X_0)\ to \check{\pi}_n(X,X_0)$下的同伦群$\check。子群$\ker(\Psi_n)$是该策略的障碍,因为它恰好由$\pi_n(X,X_0)$的那些元素组成,这些元素不能通过$X$的多面体近似来检测。在本文中,我们使用Spanier基团的高维类似物来刻画$\ker(\Psi_n)$。特别地,我们证明了如果$X$是仿紧的,Hausdorff和$LC^{n-1}$,那么$\ker(\Psi_n)$等于$X$的第$n$个Spanier群。我们还利用高Spanier群的观点推广了Kozlowski Segal的一个定理,该定理给出了$\Psi_{n}$是同构的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elements of higher homotopy groups undetectable by polyhedral approximation
When non-trivial local structures are present in a topological space $X$, a common approach to characterizing the isomorphism type of the $n$-th homotopy group $\pi_n(X,x_0)$ is to consider the image of $\pi_n(X,x_0)$ in the $n$-th \v{C}ech homotopy group $\check{\pi}_n(X,x_0)$ under the canonical homomorphism $\Psi_{n}:\pi_n(X,x_0)\to \check{\pi}_n(X,x_0)$. The subgroup $\ker(\Psi_n)$ is the obstruction to this tactic as it consists of precisely those elements of $\pi_n(X,x_0)$, which cannot be detected by polyhedral approximations to $X$. In this paper, we use higher dimensional analogues of Spanier groups to characterize $\ker(\Psi_n)$. In particular, we prove that if $X$ is paracompact, Hausdorff, and $LC^{n-1}$, then $\ker(\Psi_n)$ is equal to the $n$-th Spanier group of $X$. We also use the perspective of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives conditions ensuring that $\Psi_{n}$ is an isomorphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信