Heisenberg群上具有常势和退化势的拟线性亚椭圆方程的最小能量解

IF 1.5 1区 数学 Q1 MATHEMATICS
Lu Chen, Guozhen Lu, Maochun Zhu
{"title":"Heisenberg群上具有常势和退化势的拟线性亚椭圆方程的最小能量解","authors":"Lu Chen, Guozhen Lu, Maochun Zhu","doi":"10.1112/plms.12495","DOIUrl":null,"url":null,"abstract":"Let Hn=Cn×R$\\mathbb {H}^{n}=\\mathbb {C}^{n}\\times \\mathbb {R}$ be the n$n$ ‐dimensional Heisenberg group, Q=2n+2$Q=2n+2$ be the homogeneous dimension of Hn$\\mathbb {H}^{n}$ . In this paper, we investigate the existence of a least energy solution to the Q$Q$ ‐subLaplacian Schrödinger equation with either a constant V=γ$V=\\gamma$ or a degenerate potential V$V$ vanishing on a bounded open subset of Hn$\\mathbb {H}^n$ : 0.1 −divH∇HuQ−2∇Hu+V(ξ)uQ−2u=fu$$\\begin{equation} -\\mathrm{div}_{\\mathbb {H}}{\\left({\\left|\\nabla _{\\mathbb {H}}u\\right|}^{Q-2} \\nabla _{\\mathbb {H}}u\\right)} +V(\\xi ) {\\left|u\\right|}^{Q-2}u=f{\\left(u\\right)} \\end{equation}$$with the non‐linear term f$f$ of maximal exponential growth exp(αtQQ−1)$\\exp (\\alpha t^{\\frac{Q}{Q-1}})$ as t→+∞$t\\rightarrow +\\infty$ . Since the Pólya–Szegö‐type inequality fails on Hn$\\mathbb {H}^n$ , the coercivity of the potential has been a standard assumption in the literature for subelliptic equations to exclude the vanishing phenomena of Palais–Smale sequence on the entire space Hn$\\mathbb {H}^n$ . Our aim in this paper is to remove this strong assumption. To this end, we first establish a sharp critical Trudinger–Moser inequality involving a degenerate potential on Hn$\\mathbb {H}^n$ . Second, we prove the existence of a least energy solution to the above equation with the constant potential V(ξ)=γ>0$V(\\xi )=\\gamma >0$ . Third, we establish the existence of a least energy solution to the Q$Q$ ‐subelliptic equation (0.1) involving the degenerate potential which vanishes on some open bounded set of Hn$\\mathbb {H}^{n}$ . We develop arguments that avoid using any symmetrization on Hn$\\mathbb {H}^n$ where the Pólya–Szegö inequality fails. Fourth, we also establish the existence of a least energy solution to (0.1) when the potential is a non‐degenerate Rabinowitz type potential but still fails to be coercive. Our results in this paper improve significantly on the earlier ones on quasilinear Schrödinger equations on the Heisenberg group in the literature. We note that all the main results and their proofs in this paper hold on stratified groups with the same proofs.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group\",\"authors\":\"Lu Chen, Guozhen Lu, Maochun Zhu\",\"doi\":\"10.1112/plms.12495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Hn=Cn×R$\\\\mathbb {H}^{n}=\\\\mathbb {C}^{n}\\\\times \\\\mathbb {R}$ be the n$n$ ‐dimensional Heisenberg group, Q=2n+2$Q=2n+2$ be the homogeneous dimension of Hn$\\\\mathbb {H}^{n}$ . In this paper, we investigate the existence of a least energy solution to the Q$Q$ ‐subLaplacian Schrödinger equation with either a constant V=γ$V=\\\\gamma$ or a degenerate potential V$V$ vanishing on a bounded open subset of Hn$\\\\mathbb {H}^n$ : 0.1 −divH∇HuQ−2∇Hu+V(ξ)uQ−2u=fu$$\\\\begin{equation} -\\\\mathrm{div}_{\\\\mathbb {H}}{\\\\left({\\\\left|\\\\nabla _{\\\\mathbb {H}}u\\\\right|}^{Q-2} \\\\nabla _{\\\\mathbb {H}}u\\\\right)} +V(\\\\xi ) {\\\\left|u\\\\right|}^{Q-2}u=f{\\\\left(u\\\\right)} \\\\end{equation}$$with the non‐linear term f$f$ of maximal exponential growth exp(αtQQ−1)$\\\\exp (\\\\alpha t^{\\\\frac{Q}{Q-1}})$ as t→+∞$t\\\\rightarrow +\\\\infty$ . Since the Pólya–Szegö‐type inequality fails on Hn$\\\\mathbb {H}^n$ , the coercivity of the potential has been a standard assumption in the literature for subelliptic equations to exclude the vanishing phenomena of Palais–Smale sequence on the entire space Hn$\\\\mathbb {H}^n$ . Our aim in this paper is to remove this strong assumption. To this end, we first establish a sharp critical Trudinger–Moser inequality involving a degenerate potential on Hn$\\\\mathbb {H}^n$ . Second, we prove the existence of a least energy solution to the above equation with the constant potential V(ξ)=γ>0$V(\\\\xi )=\\\\gamma >0$ . Third, we establish the existence of a least energy solution to the Q$Q$ ‐subelliptic equation (0.1) involving the degenerate potential which vanishes on some open bounded set of Hn$\\\\mathbb {H}^{n}$ . We develop arguments that avoid using any symmetrization on Hn$\\\\mathbb {H}^n$ where the Pólya–Szegö inequality fails. Fourth, we also establish the existence of a least energy solution to (0.1) when the potential is a non‐degenerate Rabinowitz type potential but still fails to be coercive. Our results in this paper improve significantly on the earlier ones on quasilinear Schrödinger equations on the Heisenberg group in the literature. We note that all the main results and their proofs in this paper hold on stratified groups with the same proofs.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12495\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12495","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

设Hn=Cn×R$\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}$ 成为n$n$ ‐维海森堡群,Q=2n+2$Q=2n+2$ 是Hn的齐次维数$\mathbb {H}^{n}$ 。本文研究了Q的最小能量解的存在性$Q$ ‐具有常数V=γ的次拉普拉斯Schrödinger方程$V=\gamma$ 或者简并势V$V$ 消失在Hn的有界开子集上$\mathbb {H}^n$ : 0.1−divH∇HuQ−2∇Hu+V(ξ)uQ−2u=fu$$\begin{equation} -\mathrm{div}_{\mathbb {H}}{\left({\left|\nabla _{\mathbb {H}}u\right|}^{Q-2} \nabla _{\mathbb {H}}u\right)} +V(\xi ) {\left|u\right|}^{Q-2}u=f{\left(u\right)} \end{equation}$$非线性项f$f$ 最大指数增长exp(αtQQ−1)$\exp (\alpha t^{\frac{Q}{Q-1}})$ 当t→+∞时$t\rightarrow +\infty$ 。因为Pólya-Szegö‐型不等式在Hn上失效$\mathbb {H}^n$ ,势的矫顽力已成为亚椭圆方程的标准假设,以排除Palais-Smale序列在整个空间Hn上的消失现象$\mathbb {H}^n$ 。我们在本文中的目的是消除这种强烈的假设。为此,我们首先建立了一个涉及Hn上简并势的尖锐临界Trudinger-Moser不等式$\mathbb {H}^n$ 。其次,我们证明了恒电位V(ξ)=γ>的最小能量解的存在性$V(\xi )=\gamma >0$ 。第三,我们建立了Q最小能量解的存在性$Q$ ‐亚椭圆方程(0.1),涉及在Hn的开有界集合上消失的简并势$\mathbb {H}^{n}$ 。我们提出了避免在Hn上使用任何对称的论点$\mathbb {H}^n$ 其中Pólya-Szegö不等式失效。第四,我们还建立了(0.1)的最小能量解的存在性,当势为非简并Rabinowitz型势但仍然不是强制时。本文的结果比文献中关于Heisenberg群的拟线性Schrödinger方程的结果有了明显的改进。我们注意到,本文的所有主要结果及其证明都成立于具有相同证明的分层群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group
Let Hn=Cn×R$\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}$ be the n$n$ ‐dimensional Heisenberg group, Q=2n+2$Q=2n+2$ be the homogeneous dimension of Hn$\mathbb {H}^{n}$ . In this paper, we investigate the existence of a least energy solution to the Q$Q$ ‐subLaplacian Schrödinger equation with either a constant V=γ$V=\gamma$ or a degenerate potential V$V$ vanishing on a bounded open subset of Hn$\mathbb {H}^n$ : 0.1 −divH∇HuQ−2∇Hu+V(ξ)uQ−2u=fu$$\begin{equation} -\mathrm{div}_{\mathbb {H}}{\left({\left|\nabla _{\mathbb {H}}u\right|}^{Q-2} \nabla _{\mathbb {H}}u\right)} +V(\xi ) {\left|u\right|}^{Q-2}u=f{\left(u\right)} \end{equation}$$with the non‐linear term f$f$ of maximal exponential growth exp(αtQQ−1)$\exp (\alpha t^{\frac{Q}{Q-1}})$ as t→+∞$t\rightarrow +\infty$ . Since the Pólya–Szegö‐type inequality fails on Hn$\mathbb {H}^n$ , the coercivity of the potential has been a standard assumption in the literature for subelliptic equations to exclude the vanishing phenomena of Palais–Smale sequence on the entire space Hn$\mathbb {H}^n$ . Our aim in this paper is to remove this strong assumption. To this end, we first establish a sharp critical Trudinger–Moser inequality involving a degenerate potential on Hn$\mathbb {H}^n$ . Second, we prove the existence of a least energy solution to the above equation with the constant potential V(ξ)=γ>0$V(\xi )=\gamma >0$ . Third, we establish the existence of a least energy solution to the Q$Q$ ‐subelliptic equation (0.1) involving the degenerate potential which vanishes on some open bounded set of Hn$\mathbb {H}^{n}$ . We develop arguments that avoid using any symmetrization on Hn$\mathbb {H}^n$ where the Pólya–Szegö inequality fails. Fourth, we also establish the existence of a least energy solution to (0.1) when the potential is a non‐degenerate Rabinowitz type potential but still fails to be coercive. Our results in this paper improve significantly on the earlier ones on quasilinear Schrödinger equations on the Heisenberg group in the literature. We note that all the main results and their proofs in this paper hold on stratified groups with the same proofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信