{"title":"双机器学习估计器速率双重鲁棒性的假设精益证伪检验","authors":"Lin Liu , Rajarshi Mukherjee , James M. Robins","doi":"10.1016/j.jeconom.2023.105500","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The class of doubly robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square </span>continuous functionals<span> that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals </span></span><span><math><mi>ψ</mi></math></span> are double-machine-learning (DML) estimators (Chernozhukov et al., 2018a). A DML estimator <span><math><msub><mrow><mover><mrow><mi>ψ</mi></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> of <span><math><mi>ψ</mi></math></span> depends on estimates <span><math><mrow><mover><mrow><mi>p</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><mi>b</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of a pair of nuisance functions <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, and is said to satisfy “rate double-robustness” if the Cauchy–Schwarz upper bound of its bias is <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Rate double-robustness implies that the bias is <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but the converse is false. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on <span><math><mi>b</mi></math></span> or <span><math><mi>p</mi></math></span>) tests of the validity of a nominal <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></math></span> Wald confidence interval (CI) centered at <span><math><msub><mrow><mover><mrow><mi>ψ</mi></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>. But this would require a test of the bias to be <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst’s justification for her claim that the reported <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></math></span> Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on <span><math><mi>b</mi></math></span> and <span><math><mi>p</mi></math></span> to ensure “rate double-robustness”. Here we exhibit valid, assumption-lean tests of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>: “rate double-robustness holds”, with non-trivial power against certain alternatives. If <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is rejected, we will have falsified her justification. However, no assumption-lean test of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"240 2","pages":"Article 105500"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators\",\"authors\":\"Lin Liu , Rajarshi Mukherjee , James M. Robins\",\"doi\":\"10.1016/j.jeconom.2023.105500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The class of doubly robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square </span>continuous functionals<span> that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals </span></span><span><math><mi>ψ</mi></math></span> are double-machine-learning (DML) estimators (Chernozhukov et al., 2018a). A DML estimator <span><math><msub><mrow><mover><mrow><mi>ψ</mi></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span> of <span><math><mi>ψ</mi></math></span> depends on estimates <span><math><mrow><mover><mrow><mi>p</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mover><mrow><mi>b</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of a pair of nuisance functions <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, and is said to satisfy “rate double-robustness” if the Cauchy–Schwarz upper bound of its bias is <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Rate double-robustness implies that the bias is <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, but the converse is false. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on <span><math><mi>b</mi></math></span> or <span><math><mi>p</mi></math></span>) tests of the validity of a nominal <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></math></span> Wald confidence interval (CI) centered at <span><math><msub><mrow><mover><mrow><mi>ψ</mi></mrow><mrow><mo>̂</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow></msub></math></span>. But this would require a test of the bias to be <span><math><mrow><mi>o</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst’s justification for her claim that the reported <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></math></span> Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on <span><math><mi>b</mi></math></span> and <span><math><mi>p</mi></math></span> to ensure “rate double-robustness”. Here we exhibit valid, assumption-lean tests of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>: “rate double-robustness holds”, with non-trivial power against certain alternatives. If <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is rejected, we will have falsified her justification. However, no assumption-lean test of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"240 2\",\"pages\":\"Article 105500\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407623002166\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407623002166","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
罗特尼茨基等人(2021 年)研究的双稳健(DR)函数类在经济学和生物统计学中具有重要意义。严格来说,它包括 (i) Chernozhukov 等人(2022b)研究的可写成条件期望的仿射函数期望的均方连续函数类和 Robins 等人(2008)研究的函数类。目前最先进的 DR 函数ψ估计器是双机学习(DML)估计器(Chernozhukov 等人,2018a)。ψ的DML估计子ψ̂1取决于一对滋扰函数p(x)和b(x)的估计值p̂(x)和b̂(x),如果其偏差的Cauchy-Schwarz上界为o(n-1/2),则称其满足 "速率双稳健性"。速率双稳健性意味着偏差为 o(n-1/2),但反之亦然。如果可以实现,我们的科学目标应该是构建有效的、不依赖假设的(即不对 b 或 p 作复杂性降低的假设)检验,检验以 ψ ̂1 为中心的名义 (1-α) Wald 置信区间 (CI) 的有效性。但这需要检验偏差是否为 o(n-1/2),而这可以证明是不存在的。因此,我们采用了一个不那么雄心勃勃的目标,即在可能的情况下,证伪分析师声称所报告的 (1-α) Wald CI 有效的理由。在很多情况下,分析师会通过对 b 和 p 强加降低复杂性的假设来证明自己的说法是正确的,以确保 "双重稳健性"。在这里,我们展示了对 H0:"比率双重稳健性成立 "进行的有效的、与假设无关的检验,这些检验对某些替代方案具有非同一般的威力。如果 H0 被否定,我们就证伪了她的理由。然而,对 H0 的任何假设检验,包括我们的检验,都不可能是一致的检验。因此,我们的检验没有被拒绝并不是支持 H0 的有意义的证据。
Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators
The class of doubly robust (DR) functionals studied by Rotnitzky et al. (2021) is of central importance in economics and biostatistics. It strictly includes both (i) the class of mean-square continuous functionals that can be written as an expectation of an affine functional of a conditional expectation studied by Chernozhukov et al. (2022b) and the class of functionals studied by Robins et al. (2008). The present state-of-the-art estimators for DR functionals are double-machine-learning (DML) estimators (Chernozhukov et al., 2018a). A DML estimator of depends on estimates and of a pair of nuisance functions and , and is said to satisfy “rate double-robustness” if the Cauchy–Schwarz upper bound of its bias is . Rate double-robustness implies that the bias is , but the converse is false. Were it achievable, our scientific goal would have been to construct valid, assumption-lean (i.e. no complexity-reducing assumptions on or ) tests of the validity of a nominal Wald confidence interval (CI) centered at . But this would require a test of the bias to be , which can be shown not to exist. We therefore adopt the less ambitious goal of falsifying, when possible, an analyst’s justification for her claim that the reported Wald CI is valid. In many instances, an analyst justifies her claim by imposing complexity-reducing assumptions on and to ensure “rate double-robustness”. Here we exhibit valid, assumption-lean tests of : “rate double-robustness holds”, with non-trivial power against certain alternatives. If is rejected, we will have falsified her justification. However, no assumption-lean test of , including ours, can be a consistent test. Thus, the failure of our test to reject is not meaningful evidence in favor of .
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.