$\ mathm {GL}_n$的内部形式的coxette类型的On循环delign - lusztig变体

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Chan, A. Ivanov
{"title":"$\\ mathm {GL}_n$的内部形式的coxette类型的On循环delign - lusztig变体","authors":"C. Chan, A. Ivanov","doi":"10.4310/cjm.2023.v11.n2.a2","DOIUrl":null,"url":null,"abstract":"For a reductive group $G$ over a local non-archimedean field $K$ one can mimic the construction from the classical Deligne--Lusztig theory by using the loop space functor. We study this construction in special the case that $G$ is an inner form of ${\\rm GL}_n$ and the loop Deligne--Lusztig variety is of Coxeter type. After simplifying the proof of its representability, our main result is that its $\\ell$-adic cohomology realizes many irreducible supercuspidal representations of $G$, notably almost all among those whose L-parameter factors through an unramified elliptic maximal torus of $G$. This gives a purely local, purely geometric and -- in a sense -- quite explicit way to realize special cases of the local Langlands and Jacquet--Langlands correspondences.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On loop Deligne–Lusztig varieties of Coxeter-type for inner forms of $\\\\mathrm{GL}_n$\",\"authors\":\"C. Chan, A. Ivanov\",\"doi\":\"10.4310/cjm.2023.v11.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a reductive group $G$ over a local non-archimedean field $K$ one can mimic the construction from the classical Deligne--Lusztig theory by using the loop space functor. We study this construction in special the case that $G$ is an inner form of ${\\\\rm GL}_n$ and the loop Deligne--Lusztig variety is of Coxeter type. After simplifying the proof of its representability, our main result is that its $\\\\ell$-adic cohomology realizes many irreducible supercuspidal representations of $G$, notably almost all among those whose L-parameter factors through an unramified elliptic maximal torus of $G$. This gives a purely local, purely geometric and -- in a sense -- quite explicit way to realize special cases of the local Langlands and Jacquet--Langlands correspondences.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2023.v11.n2.a2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2023.v11.n2.a2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

对于局部非阿基米德域$K$上的归约群$G$,可以通过使用循环空间函子来模拟经典Deligne-Lusztig理论的构造。在$G$是${\rm-GL}_n$的内部形式并且循环Deligne-Lusztig变种是Coxeter型的特殊情况下,我们研究了这种构造。在简化了其可表示性的证明后,我们的主要结果是,它的$\ell$adic上同调实现了$G$的许多不可约超uscid表示,特别是几乎所有的L参数因子都是通过$G$非分支椭圆极大环面的。这提供了一种纯粹局部的、纯粹几何的、在某种意义上相当明确的方式来实现局部Langlands和Jacquet-Langlands对应关系的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On loop Deligne–Lusztig varieties of Coxeter-type for inner forms of $\mathrm{GL}_n$
For a reductive group $G$ over a local non-archimedean field $K$ one can mimic the construction from the classical Deligne--Lusztig theory by using the loop space functor. We study this construction in special the case that $G$ is an inner form of ${\rm GL}_n$ and the loop Deligne--Lusztig variety is of Coxeter type. After simplifying the proof of its representability, our main result is that its $\ell$-adic cohomology realizes many irreducible supercuspidal representations of $G$, notably almost all among those whose L-parameter factors through an unramified elliptic maximal torus of $G$. This gives a purely local, purely geometric and -- in a sense -- quite explicit way to realize special cases of the local Langlands and Jacquet--Langlands correspondences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信