{"title":"316L不锈钢激光冲击喷丸冷喷添加剂的摩擦学性能","authors":"A. Ralls, B. Mao, P. Menezes","doi":"10.1115/1.4062102","DOIUrl":null,"url":null,"abstract":"\n In recent years, cold spray additive manufacturing (CSAM) has become an attractive technology for surface modification and protection. However, due to the intrinsic porous nature of CSAM coatings, they suffer from rapid material degradation due to premature brittle fracturing induced by tribological interactions. In this work, laser shock peening (LSP) was utilized as a post-processing technology to mitigate the surface porosity and augment the surface characteristics of CSAM 316L SS. Due to the synergistic influence of severe plastic deformation and rapid surface heating, the surface porosities were effectively healed, thus reducing the surface roughness. Combined with the surface strengthening effects of LSP, the frictional resistance and transfer layer formation on the CSAM LSP surfaces were reduced. The underlying mechanisms for these findings were discussed by correlating the atomic, microstructural, and physical features of the LSP surfaces. Based on these findings, it can be suggested that LSP is indeed a useful technique to control the surface characteristics of CSAM 316L SS coatings.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tribological Performance of Laser Shock Peened Cold Spray Additive Manufactured 316L Stainless Steel\",\"authors\":\"A. Ralls, B. Mao, P. Menezes\",\"doi\":\"10.1115/1.4062102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent years, cold spray additive manufacturing (CSAM) has become an attractive technology for surface modification and protection. However, due to the intrinsic porous nature of CSAM coatings, they suffer from rapid material degradation due to premature brittle fracturing induced by tribological interactions. In this work, laser shock peening (LSP) was utilized as a post-processing technology to mitigate the surface porosity and augment the surface characteristics of CSAM 316L SS. Due to the synergistic influence of severe plastic deformation and rapid surface heating, the surface porosities were effectively healed, thus reducing the surface roughness. Combined with the surface strengthening effects of LSP, the frictional resistance and transfer layer formation on the CSAM LSP surfaces were reduced. The underlying mechanisms for these findings were discussed by correlating the atomic, microstructural, and physical features of the LSP surfaces. Based on these findings, it can be suggested that LSP is indeed a useful technique to control the surface characteristics of CSAM 316L SS coatings.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062102\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062102","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In recent years, cold spray additive manufacturing (CSAM) has become an attractive technology for surface modification and protection. However, due to the intrinsic porous nature of CSAM coatings, they suffer from rapid material degradation due to premature brittle fracturing induced by tribological interactions. In this work, laser shock peening (LSP) was utilized as a post-processing technology to mitigate the surface porosity and augment the surface characteristics of CSAM 316L SS. Due to the synergistic influence of severe plastic deformation and rapid surface heating, the surface porosities were effectively healed, thus reducing the surface roughness. Combined with the surface strengthening effects of LSP, the frictional resistance and transfer layer formation on the CSAM LSP surfaces were reduced. The underlying mechanisms for these findings were discussed by correlating the atomic, microstructural, and physical features of the LSP surfaces. Based on these findings, it can be suggested that LSP is indeed a useful technique to control the surface characteristics of CSAM 316L SS coatings.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints