关于高扭类

IF 0.8 2区 数学 Q2 MATHEMATICS
J. Asadollahi, Peter Jørgensen, Sibylle Schroll, H. Treffinger
{"title":"关于高扭类","authors":"J. Asadollahi, Peter Jørgensen, Sibylle Schroll, H. Treffinger","doi":"10.1017/nmj.2022.8","DOIUrl":null,"url":null,"abstract":"Abstract Building on the embedding of an n-abelian category \n$\\mathscr {M}$\n into an abelian category \n$\\mathcal {A}$\n as an n-cluster-tilting subcategory of \n$\\mathcal {A}$\n , in this paper, we relate the n-torsion classes of \n$\\mathscr {M}$\n with the torsion classes of \n$\\mathcal {A}$\n . Indeed, we show that every n-torsion class in \n$\\mathscr {M}$\n is given by the intersection of a torsion class in \n$\\mathcal {A}$\n with \n$\\mathscr {M}$\n . Moreover, we show that every chain of n-torsion classes in the n-abelian category \n$\\mathscr {M}$\n induces a Harder–Narasimhan filtration for every object of \n$\\mathscr {M}$\n . We use the relation between \n$\\mathscr {M}$\n and \n$\\mathcal {A}$\n to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in \n$\\mathscr {M}$\n can be induced by a chain of torsion classes in \n$\\mathcal {A}$\n . Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"248 1","pages":"823 - 848"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ON HIGHER TORSION CLASSES\",\"authors\":\"J. Asadollahi, Peter Jørgensen, Sibylle Schroll, H. Treffinger\",\"doi\":\"10.1017/nmj.2022.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Building on the embedding of an n-abelian category \\n$\\\\mathscr {M}$\\n into an abelian category \\n$\\\\mathcal {A}$\\n as an n-cluster-tilting subcategory of \\n$\\\\mathcal {A}$\\n , in this paper, we relate the n-torsion classes of \\n$\\\\mathscr {M}$\\n with the torsion classes of \\n$\\\\mathcal {A}$\\n . Indeed, we show that every n-torsion class in \\n$\\\\mathscr {M}$\\n is given by the intersection of a torsion class in \\n$\\\\mathcal {A}$\\n with \\n$\\\\mathscr {M}$\\n . Moreover, we show that every chain of n-torsion classes in the n-abelian category \\n$\\\\mathscr {M}$\\n induces a Harder–Narasimhan filtration for every object of \\n$\\\\mathscr {M}$\\n . We use the relation between \\n$\\\\mathscr {M}$\\n and \\n$\\\\mathcal {A}$\\n to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in \\n$\\\\mathscr {M}$\\n can be induced by a chain of torsion classes in \\n$\\\\mathcal {A}$\\n . Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"248 1\",\"pages\":\"823 - 848\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文在n-范畴$\mathscr{M}$作为$\mathcal{A}$的n-簇的子范畴嵌入到阿贝尔范畴$\math cal{A}$中的基础上,将$\mathscr{M}$的n-拓扑类与$\mathcal{A}$的扭转类联系起来。事实上,我们证明了$\mathscr{M}$中的每一个n-扭类都是由$\mathcal{a}$的扭类与$\mathscr{M}$的交集给出的。此外,我们还证明了n-贝利范畴$\mathscr{M}$中的每一个n-或子类链都会对$\mathscr{M}$的每一对象进行Harder–Narasimhan过滤。我们使用$\mathscr{M}$和$\mathcal{A}$之间的关系来证明,由$\mathscr{M}$中的一个n-扭类链诱导的每一个Harder–Narasimhan过滤都可以由$\math cal{A}$的一个扭转类链诱导。此外,我们证明了n向类是由Galois覆盖函子保留的,因此我们提供了一种系统地构造新的(链)n向类的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON HIGHER TORSION CLASSES
Abstract Building on the embedding of an n-abelian category $\mathscr {M}$ into an abelian category $\mathcal {A}$ as an n-cluster-tilting subcategory of $\mathcal {A}$ , in this paper, we relate the n-torsion classes of $\mathscr {M}$ with the torsion classes of $\mathcal {A}$ . Indeed, we show that every n-torsion class in $\mathscr {M}$ is given by the intersection of a torsion class in $\mathcal {A}$ with $\mathscr {M}$ . Moreover, we show that every chain of n-torsion classes in the n-abelian category $\mathscr {M}$ induces a Harder–Narasimhan filtration for every object of $\mathscr {M}$ . We use the relation between $\mathscr {M}$ and $\mathcal {A}$ to show that every Harder–Narasimhan filtration induced by a chain of n-torsion classes in $\mathscr {M}$ can be induced by a chain of torsion classes in $\mathcal {A}$ . Furthermore, we show that n-torsion classes are preserved by Galois covering functors, thus we provide a way to systematically construct new (chains of) n-torsion classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信