Mohammad Alsager Alzayed, Scarlett Miller, Jessica Menold, Jacquelyn Huff, Christopher McComb
{"title":"同理心会带来创造力吗?团队特质共情对名义群体概念产生和早期概念筛选作用的模拟研究","authors":"Mohammad Alsager Alzayed, Scarlett Miller, Jessica Menold, Jacquelyn Huff, Christopher McComb","doi":"10.1017/S089006042300001X","DOIUrl":null,"url":null,"abstract":"Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has become more invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, defined here as the average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes during nominal group concept generation and early concept screening. Therefore, the goal of the current study is to investigate the impact of team empathy on nominal group concept generation and early concept screening in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of non-interacting brainstorming individuals generated by a statistical bootstrapping technique. This simulation drew upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicated that the impact of the elevation and diversity of different components of team empathy varied depending upon the specific design outcome (number of ideas, overall creativity, elegance, usefulness, uniqueness) and design stage (concept generation and concept screening). The results from this study can be used to guide team formation in engineering design.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening\",\"authors\":\"Mohammad Alsager Alzayed, Scarlett Miller, Jessica Menold, Jacquelyn Huff, Christopher McComb\",\"doi\":\"10.1017/S089006042300001X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has become more invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, defined here as the average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes during nominal group concept generation and early concept screening. Therefore, the goal of the current study is to investigate the impact of team empathy on nominal group concept generation and early concept screening in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of non-interacting brainstorming individuals generated by a statistical bootstrapping technique. This simulation drew upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicated that the impact of the elevation and diversity of different components of team empathy varied depending upon the specific design outcome (number of ideas, overall creativity, elegance, usefulness, uniqueness) and design stage (concept generation and concept screening). The results from this study can be used to guide team formation in engineering design.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S089006042300001X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S089006042300001X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening
Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has become more invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, defined here as the average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes during nominal group concept generation and early concept screening. Therefore, the goal of the current study is to investigate the impact of team empathy on nominal group concept generation and early concept screening in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of non-interacting brainstorming individuals generated by a statistical bootstrapping technique. This simulation drew upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicated that the impact of the elevation and diversity of different components of team empathy varied depending upon the specific design outcome (number of ideas, overall creativity, elegance, usefulness, uniqueness) and design stage (concept generation and concept screening). The results from this study can be used to guide team formation in engineering design.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.