闭表面上超椭圆周期微分同态的Dehn捻表示

IF 0.4 4区 数学 Q4 MATHEMATICS
Norihisa Takahashi, Hiraku Nozawa
{"title":"闭表面上超椭圆周期微分同态的Dehn捻表示","authors":"Norihisa Takahashi, Hiraku Nozawa","doi":"10.2996/kmj/1605063626","DOIUrl":null,"url":null,"abstract":"We classify up to conjugacy the group generated by a commuting pair of a periodic diffeomorphism and a hyperelliptic involution on an oriented closed surface. This result can be viewed as a refinement of Ishizaka's result on classification of the mapping classes of hyperelliptic periodic diffeomorphisms. As an application, we obtain the Dehn twist presentations of hyperelliptic periodic mapping classes, which are closely related to the ones obtained by Ishizaka.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dehn twist presentations of hyperelliptic periodic diffeomorphisms on closed surfaces\",\"authors\":\"Norihisa Takahashi, Hiraku Nozawa\",\"doi\":\"10.2996/kmj/1605063626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify up to conjugacy the group generated by a commuting pair of a periodic diffeomorphism and a hyperelliptic involution on an oriented closed surface. This result can be viewed as a refinement of Ishizaka's result on classification of the mapping classes of hyperelliptic periodic diffeomorphisms. As an application, we obtain the Dehn twist presentations of hyperelliptic periodic mapping classes, which are closely related to the ones obtained by Ishizaka.\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/1605063626\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/1605063626","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们将一个周期微分同构和一个超椭圆对合的交换对在有向封闭曲面上生成的群划分为共轭性。这个结果可以看作是对Ishizaka关于超椭圆周期微分同态映射类分类的结果的改进。作为应用,我们得到了超椭圆周期映射类的Dehn扭转表示,这些表示与Ishizaka的Dehn扭转表示密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dehn twist presentations of hyperelliptic periodic diffeomorphisms on closed surfaces
We classify up to conjugacy the group generated by a commuting pair of a periodic diffeomorphism and a hyperelliptic involution on an oriented closed surface. This result can be viewed as a refinement of Ishizaka's result on classification of the mapping classes of hyperelliptic periodic diffeomorphisms. As an application, we obtain the Dehn twist presentations of hyperelliptic periodic mapping classes, which are closely related to the ones obtained by Ishizaka.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信