影响大数据采用和企业绩效的因素评估:来自新兴经济体的证据

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mahak Sharma, Ruchita Gupta, Rajat Sehrawat, Karuna Jain, A. Dhir
{"title":"影响大数据采用和企业绩效的因素评估:来自新兴经济体的证据","authors":"Mahak Sharma, Ruchita Gupta, Rajat Sehrawat, Karuna Jain, A. Dhir","doi":"10.1080/17517575.2023.2218160","DOIUrl":null,"url":null,"abstract":"ABSTRACT The current study investigates and prioritizes 17 determinants of big data adoption (BDA) and establishes causality between these determinants’ and firms’ performance in the tourism and hospitality sector using technology, organisation & environment (TOE) framework. Semi-structured interviews and multi-criteria decision-making (MCDM) were utilized to gather data from 28 industry experts. “Big data quality” ranked as the most influential determinant, while “trading partner pressure” ranked as the least influential determinant. This study’s findings highlight the need for governments across the globe to propose and implement policies to reduce the digital divide and enhance standardization.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The assessment of factors influencing Big data adoption and firm performance: Evidences from emerging economy\",\"authors\":\"Mahak Sharma, Ruchita Gupta, Rajat Sehrawat, Karuna Jain, A. Dhir\",\"doi\":\"10.1080/17517575.2023.2218160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The current study investigates and prioritizes 17 determinants of big data adoption (BDA) and establishes causality between these determinants’ and firms’ performance in the tourism and hospitality sector using technology, organisation & environment (TOE) framework. Semi-structured interviews and multi-criteria decision-making (MCDM) were utilized to gather data from 28 industry experts. “Big data quality” ranked as the most influential determinant, while “trading partner pressure” ranked as the least influential determinant. This study’s findings highlight the need for governments across the globe to propose and implement policies to reduce the digital divide and enhance standardization.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2023.2218160\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2023.2218160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

目前的研究调查和优先考虑大数据采用(BDA)的17个决定因素,并利用技术,组织和环境(TOE)框架建立这些决定因素和公司在旅游和酒店业绩效之间的因果关系。采用半结构化访谈和多标准决策(MCDM)收集28位行业专家的数据。“大数据质量”是影响最大的决定因素,而“贸易伙伴压力”是影响最小的决定因素。这项研究的结果强调,全球各国政府需要提出和实施政策,以缩小数字鸿沟并加强标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The assessment of factors influencing Big data adoption and firm performance: Evidences from emerging economy
ABSTRACT The current study investigates and prioritizes 17 determinants of big data adoption (BDA) and establishes causality between these determinants’ and firms’ performance in the tourism and hospitality sector using technology, organisation & environment (TOE) framework. Semi-structured interviews and multi-criteria decision-making (MCDM) were utilized to gather data from 28 industry experts. “Big data quality” ranked as the most influential determinant, while “trading partner pressure” ranked as the least influential determinant. This study’s findings highlight the need for governments across the globe to propose and implement policies to reduce the digital divide and enhance standardization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信