离散时间SIR流行病模型的定性分析

Q1 Mathematics
J. Hallberg Szabadváry, Y. Zhou
{"title":"离散时间SIR流行病模型的定性分析","authors":"J. Hallberg Szabadváry,&nbsp;Y. Zhou","doi":"10.1016/j.csfx.2021.100067","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this paper is to study the local dynamics and bifurcations of a discrete-time SIR epidemiological model. The existence and stability of disease-free and endemic fixed points are investigated along with a fairly complete classification of the systems bifurcations, in particular, a complete analysis on local stability and codimension 1 bifurcations in the parameter space. Sufficient conditions for positive trajectories are given. The existence of a 3-cycle is shown, which implies the existence of cycles of arbitrary length by the celebrated Sharkovskii’s theorem. Generacity of some bifurcations is examined both analytically and through numerical computations. Bifurcation diagrams along with numerical simulations are presented. The system turns out to have both rich and interesting dynamics.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"7 ","pages":"Article 100067"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054421000129/pdfft?md5=12c76432a8ba3704fb921d4845f61810&pid=1-s2.0-S2590054421000129-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On qualitative analysis of a discrete time SIR epidemical model\",\"authors\":\"J. Hallberg Szabadváry,&nbsp;Y. Zhou\",\"doi\":\"10.1016/j.csfx.2021.100067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this paper is to study the local dynamics and bifurcations of a discrete-time SIR epidemiological model. The existence and stability of disease-free and endemic fixed points are investigated along with a fairly complete classification of the systems bifurcations, in particular, a complete analysis on local stability and codimension 1 bifurcations in the parameter space. Sufficient conditions for positive trajectories are given. The existence of a 3-cycle is shown, which implies the existence of cycles of arbitrary length by the celebrated Sharkovskii’s theorem. Generacity of some bifurcations is examined both analytically and through numerical computations. Bifurcation diagrams along with numerical simulations are presented. The system turns out to have both rich and interesting dynamics.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"7 \",\"pages\":\"Article 100067\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590054421000129/pdfft?md5=12c76432a8ba3704fb921d4845f61810&pid=1-s2.0-S2590054421000129-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054421000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054421000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究离散时间SIR流行病学模型的局部动力学和分岔。研究了无病不动点和地方病不动点的存在性和稳定性,并对系统的分岔进行了较为完整的分类,特别是对系统的局部稳定性和参数空间上的协维分岔进行了完整的分析。给出了正轨迹的充分条件。利用著名的沙可夫斯基定理,证明了3环的存在性,并由此证明了任意长度的环的存在性。用解析方法和数值计算方法检验了一些分岔的广义性。给出了分岔图和数值模拟。该系统具有丰富而有趣的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On qualitative analysis of a discrete time SIR epidemical model

The main purpose of this paper is to study the local dynamics and bifurcations of a discrete-time SIR epidemiological model. The existence and stability of disease-free and endemic fixed points are investigated along with a fairly complete classification of the systems bifurcations, in particular, a complete analysis on local stability and codimension 1 bifurcations in the parameter space. Sufficient conditions for positive trajectories are given. The existence of a 3-cycle is shown, which implies the existence of cycles of arbitrary length by the celebrated Sharkovskii’s theorem. Generacity of some bifurcations is examined both analytically and through numerical computations. Bifurcation diagrams along with numerical simulations are presented. The system turns out to have both rich and interesting dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信