气体脱硫吸附技术

Q4 Energy
Paliva Pub Date : 2021-12-31 DOI:10.35933/paliva.2021.04.03
K. Ciahotný
{"title":"气体脱硫吸附技术","authors":"K. Ciahotný","doi":"10.35933/paliva.2021.04.03","DOIUrl":null,"url":null,"abstract":"Adsorption technologies used for gas desulfurization are a widespread technique which, due to its relative simplicity, are widely used to the purification smaller volumes of gas. However, for their trouble-free and economical use, it is necessary to respect several basic requirements for the selection of suitable types of adsorbents with respect to the specific composition of the purified gas. The article provides a brief overview of the history of the development of adsorption technologies and also provides several different examples of the operational use of this technology for the purification of gases containing high concentrations of sulfur substances. Furthermore, the principles of correct selection of a suitable adsorbent for specific application cases are also specified here.\nIron oxide adsorbents were used in the early times of the operation of the technology, which were inexpensive but had a relatively low sorption capacity for sulfur compounds. Therefore, sorbents based on iron oxides have been gradually replaced by more powerful, but also more expensive sorbents based on activated carbon. Initially, activated carbon without impregnation was used, the production of which took place in the Czech Republic on an industrial scale.\nBy the further development of impregnated types of activated carbon and their introduction into industrial production, these adsorbents have been also used in adsorption technologies intended for gas desulfurization. Their sorption capacity is much higher in comparison with non-impregnated types of activated carbon, because the impregnants used convert sulfur compounds from gas into non-volatile substances (elemental sulfur, sulfides, polysulfides). This ensures a long service life of the adsorbent and high efficiency of gas purification from sul-fur substances.","PeriodicalId":36809,"journal":{"name":"Paliva","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas desulfurization adsorption technology\",\"authors\":\"K. Ciahotný\",\"doi\":\"10.35933/paliva.2021.04.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adsorption technologies used for gas desulfurization are a widespread technique which, due to its relative simplicity, are widely used to the purification smaller volumes of gas. However, for their trouble-free and economical use, it is necessary to respect several basic requirements for the selection of suitable types of adsorbents with respect to the specific composition of the purified gas. The article provides a brief overview of the history of the development of adsorption technologies and also provides several different examples of the operational use of this technology for the purification of gases containing high concentrations of sulfur substances. Furthermore, the principles of correct selection of a suitable adsorbent for specific application cases are also specified here.\\nIron oxide adsorbents were used in the early times of the operation of the technology, which were inexpensive but had a relatively low sorption capacity for sulfur compounds. Therefore, sorbents based on iron oxides have been gradually replaced by more powerful, but also more expensive sorbents based on activated carbon. Initially, activated carbon without impregnation was used, the production of which took place in the Czech Republic on an industrial scale.\\nBy the further development of impregnated types of activated carbon and their introduction into industrial production, these adsorbents have been also used in adsorption technologies intended for gas desulfurization. Their sorption capacity is much higher in comparison with non-impregnated types of activated carbon, because the impregnants used convert sulfur compounds from gas into non-volatile substances (elemental sulfur, sulfides, polysulfides). This ensures a long service life of the adsorbent and high efficiency of gas purification from sul-fur substances.\",\"PeriodicalId\":36809,\"journal\":{\"name\":\"Paliva\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paliva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35933/paliva.2021.04.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paliva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35933/paliva.2021.04.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

吸附技术是一种应用广泛的气体脱硫技术,由于其相对简单,被广泛用于净化小体积气体。然而,为了使吸附剂无故障和经济地使用,有必要根据净化气体的特定组成选择合适类型的吸附剂,尊重几个基本要求。本文简要概述了吸附技术的发展历史,并提供了该技术用于净化含有高浓度硫物质的气体的几个不同的操作实例。此外,还规定了根据具体应用情况正确选择合适吸附剂的原则。在该技术运行的早期,使用了氧化铁吸附剂,这种吸附剂价格便宜,但对含硫化合物的吸附能力相对较低。因此,基于氧化铁的吸附剂已逐渐被更强大,但也更昂贵的基于活性炭的吸附剂所取代。最初,使用未浸渍的活性炭,其生产在捷克共和国以工业规模进行。随着浸渍型活性炭的进一步发展及其在工业生产中的应用,这些吸附剂也被用于气体脱硫的吸附技术。与未浸渍的活性炭相比,它们的吸附能力要高得多,因为所使用的浸渍剂将硫化合物从气体转化为非挥发性物质(单质硫、硫化物、多硫化物)。这确保了吸附剂的长使用寿命和从含硫物质中净化气体的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas desulfurization adsorption technology
Adsorption technologies used for gas desulfurization are a widespread technique which, due to its relative simplicity, are widely used to the purification smaller volumes of gas. However, for their trouble-free and economical use, it is necessary to respect several basic requirements for the selection of suitable types of adsorbents with respect to the specific composition of the purified gas. The article provides a brief overview of the history of the development of adsorption technologies and also provides several different examples of the operational use of this technology for the purification of gases containing high concentrations of sulfur substances. Furthermore, the principles of correct selection of a suitable adsorbent for specific application cases are also specified here. Iron oxide adsorbents were used in the early times of the operation of the technology, which were inexpensive but had a relatively low sorption capacity for sulfur compounds. Therefore, sorbents based on iron oxides have been gradually replaced by more powerful, but also more expensive sorbents based on activated carbon. Initially, activated carbon without impregnation was used, the production of which took place in the Czech Republic on an industrial scale. By the further development of impregnated types of activated carbon and their introduction into industrial production, these adsorbents have been also used in adsorption technologies intended for gas desulfurization. Their sorption capacity is much higher in comparison with non-impregnated types of activated carbon, because the impregnants used convert sulfur compounds from gas into non-volatile substances (elemental sulfur, sulfides, polysulfides). This ensures a long service life of the adsorbent and high efficiency of gas purification from sul-fur substances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paliva
Paliva Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.50
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信