反monge - ampantere流和Kähler-Einstein指标的应用

IF 1.3 1区 数学 Q1 MATHEMATICS
Tristan C. Collins, Tomoyuki Hisamoto, Ryosuke Takahashi
{"title":"反monge - ampantere流和Kähler-Einstein指标的应用","authors":"Tristan C. Collins, Tomoyuki Hisamoto, Ryosuke Takahashi","doi":"10.4310/jdg/1641413788","DOIUrl":null,"url":null,"abstract":"We introduce the inverse Monge-Ampere flow as the gradient flow of the Ding energy functional on the space of Kahler metrics in $2 \\pi \\lambda c_1(X)$ for $\\lambda=\\pm 1$. We prove the long-time existence of the flow. In the canonically polarized case, we show that the flow converges smoothly to the unique Kahler-Einstein metric with negative Ricci curvature. In the Fano case, assuming $X$ admits a Kahler-Einstein metric, we prove the weak convergence of the flow to a Kahler-Einstein metric. In general, we expect that the limit of the flow is related with the optimally destabilizing test configuration for the $L^2$-normalized non-Archimedean Ding functional. We confirm this expectation in the case of toric Fano manifolds.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The inverse Monge–Ampère flow and applications to Kähler–Einstein metrics\",\"authors\":\"Tristan C. Collins, Tomoyuki Hisamoto, Ryosuke Takahashi\",\"doi\":\"10.4310/jdg/1641413788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the inverse Monge-Ampere flow as the gradient flow of the Ding energy functional on the space of Kahler metrics in $2 \\\\pi \\\\lambda c_1(X)$ for $\\\\lambda=\\\\pm 1$. We prove the long-time existence of the flow. In the canonically polarized case, we show that the flow converges smoothly to the unique Kahler-Einstein metric with negative Ricci curvature. In the Fano case, assuming $X$ admits a Kahler-Einstein metric, we prove the weak convergence of the flow to a Kahler-Einstein metric. In general, we expect that the limit of the flow is related with the optimally destabilizing test configuration for the $L^2$-normalized non-Archimedean Ding functional. We confirm this expectation in the case of toric Fano manifolds.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1641413788\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1641413788","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们引入逆Monge-Ampere流作为Ding能量泛函在$2\pi\lambda c_1(X)$中的Kahler度量空间上的梯度流,对于$\lambda=\pm1$。我们证明了流的长期存在。在经典极化的情况下,我们证明了流平滑地收敛到具有负Ricci曲率的唯一Kahler-Einstein度量。在Fano情况下,假设$X$允许Kahler-Einstein度量,我们证明了流到Kahler-爱因斯坦度量的弱收敛性。通常,我们预计流量的极限与$L^2$归一化非阿基米德丁函数的最优失稳测试配置有关。我们在复曲面Fano流形的情况下证实了这一期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inverse Monge–Ampère flow and applications to Kähler–Einstein metrics
We introduce the inverse Monge-Ampere flow as the gradient flow of the Ding energy functional on the space of Kahler metrics in $2 \pi \lambda c_1(X)$ for $\lambda=\pm 1$. We prove the long-time existence of the flow. In the canonically polarized case, we show that the flow converges smoothly to the unique Kahler-Einstein metric with negative Ricci curvature. In the Fano case, assuming $X$ admits a Kahler-Einstein metric, we prove the weak convergence of the flow to a Kahler-Einstein metric. In general, we expect that the limit of the flow is related with the optimally destabilizing test configuration for the $L^2$-normalized non-Archimedean Ding functional. We confirm this expectation in the case of toric Fano manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信