{"title":"非定常对流扩散流动的有限体积法研究","authors":"M. R. Patel, J. Pandya","doi":"10.17512/jamcm.2021.4.06","DOIUrl":null,"url":null,"abstract":"This research paper is an attempt to solve the unsteady state convection diffusion one dimension equation. It focuses on the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique. The simulation of the unsteady state convection diffusion problem with a known actual solution is also used to validate both the techniques, respectively, the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique by giving a particular example and solving it using the appropriate, particular technique. It is observed that the numerical scheme is an outstanding deal with the exact solution. Numerical results and graphs are presented for different Peclet numbers. MSC 2010: 65L12, 65M08, 80M12, 80M20, 76Rxx","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A research study on unsteady state convection diffusion flow with adoption of the finite volume technique\",\"authors\":\"M. R. Patel, J. Pandya\",\"doi\":\"10.17512/jamcm.2021.4.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper is an attempt to solve the unsteady state convection diffusion one dimension equation. It focuses on the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique. The simulation of the unsteady state convection diffusion problem with a known actual solution is also used to validate both the techniques, respectively, the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique by giving a particular example and solving it using the appropriate, particular technique. It is observed that the numerical scheme is an outstanding deal with the exact solution. Numerical results and graphs are presented for different Peclet numbers. MSC 2010: 65L12, 65M08, 80M12, 80M20, 76Rxx\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2021.4.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2021.4.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A research study on unsteady state convection diffusion flow with adoption of the finite volume technique
This research paper is an attempt to solve the unsteady state convection diffusion one dimension equation. It focuses on the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique. The simulation of the unsteady state convection diffusion problem with a known actual solution is also used to validate both the techniques, respectively, the fully implicit hybrid differencing numerical finite volume technique as well as the fully implicit central differencing numerical finite volume technique by giving a particular example and solving it using the appropriate, particular technique. It is observed that the numerical scheme is an outstanding deal with the exact solution. Numerical results and graphs are presented for different Peclet numbers. MSC 2010: 65L12, 65M08, 80M12, 80M20, 76Rxx