{"title":"关于Hilfer分数阶随机Volterra-Fredholm积分-微分包涵存在性的新讨论","authors":"S. Sivasankar, R. Udhayakumar, V. Muthukumaran","doi":"10.15388/namc.2023.28.31450","DOIUrl":null,"url":null,"abstract":"The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators is the topic of our paper. The researchers used fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued maps to support their findings. To begin with, we must establish the existence of a mild solution. In addition, to show the principle, an application is presented.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new conversation on the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators\",\"authors\":\"S. Sivasankar, R. Udhayakumar, V. Muthukumaran\",\"doi\":\"10.15388/namc.2023.28.31450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators is the topic of our paper. The researchers used fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued maps to support their findings. To begin with, we must establish the existence of a mild solution. In addition, to show the principle, an application is presented.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.31450\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.31450","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A new conversation on the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators
The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators is the topic of our paper. The researchers used fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued maps to support their findings. To begin with, we must establish the existence of a mild solution. In addition, to show the principle, an application is presented.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.