{"title":"无限类型曲面的翻转图","authors":"A. Fossas, H. Parlier","doi":"10.4171/ggd/685","DOIUrl":null,"url":null,"abstract":"We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results is that flip graphs for infinite type surfaces have uncountably many connected components.","PeriodicalId":55084,"journal":{"name":"Groups Geometry and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Flip graphs for infinite type surfaces\",\"authors\":\"A. Fossas, H. Parlier\",\"doi\":\"10.4171/ggd/685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results is that flip graphs for infinite type surfaces have uncountably many connected components.\",\"PeriodicalId\":55084,\"journal\":{\"name\":\"Groups Geometry and Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Geometry and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/685\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Geometry and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/685","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We associate to triangulations of infinite type surface a type of flip graph where simultaneous flips are allowed. Our main focus is on understanding exactly when two triangulations can be related by a sequence of flips. A consequence of our results is that flip graphs for infinite type surfaces have uncountably many connected components.
期刊介绍:
Groups, Geometry, and Dynamics is devoted to publication of research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. The journal covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields.
Topics covered include:
geometric group theory;
asymptotic group theory;
combinatorial group theory;
probabilities on groups;
computational aspects and complexity;
harmonic and functional analysis on groups, free probability;
ergodic theory of group actions;
cohomology of groups and exotic cohomologies;
groups and low-dimensional topology;
group actions on trees, buildings, rooted trees.