Jian Liu, Q. Jiang, Ding-ping Xu, Hong Zheng, F. Gong, Jie Xin
{"title":"基于p -速度表征岩石弹性模量的不确定性量化","authors":"Jian Liu, Q. Jiang, Ding-ping Xu, Hong Zheng, F. Gong, Jie Xin","doi":"10.1080/17499518.2022.2119580","DOIUrl":null,"url":null,"abstract":"ABSTRACT The elastic modulus of rock is an important parameter in rock engineering, but the common methods based on laboratory tests are laborious, especially for obtaining the probability distribution of the elastic modulus that is required in reliability-based design. Many scholars have studied the regression model between the elastic modulus and P-wave velocity; however, most previous reports have ignored the characterization of parameter variability and model uncertainty. To address this problem, a large number of granite samples are collected from the Yingliangbao hydropower station (YLB), compressive wave velocity (P-wave velocity) and uniaxial compression tests are carried out in the laboratory. Then, four different regression models based on the frequentist method and Bayesian method are established to estimate the elastic modulus, the normal priors are adopted by prior analysis and the widely applicable information criterion (WAIC) is used to select the most appropriate Bayesian regression model. Finally, the effects of sample size and sample selection on different methods are studied, the results obtained from different priors are compared. The results show that the Bayesian method provides estimations that are more consistent with the test data and has better robustness in given sets of different sample selections, especially in small sample size.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"521 - 542"},"PeriodicalIF":6.5000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification for characterization of rock elastic modulus based on P-velocity\",\"authors\":\"Jian Liu, Q. Jiang, Ding-ping Xu, Hong Zheng, F. Gong, Jie Xin\",\"doi\":\"10.1080/17499518.2022.2119580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The elastic modulus of rock is an important parameter in rock engineering, but the common methods based on laboratory tests are laborious, especially for obtaining the probability distribution of the elastic modulus that is required in reliability-based design. Many scholars have studied the regression model between the elastic modulus and P-wave velocity; however, most previous reports have ignored the characterization of parameter variability and model uncertainty. To address this problem, a large number of granite samples are collected from the Yingliangbao hydropower station (YLB), compressive wave velocity (P-wave velocity) and uniaxial compression tests are carried out in the laboratory. Then, four different regression models based on the frequentist method and Bayesian method are established to estimate the elastic modulus, the normal priors are adopted by prior analysis and the widely applicable information criterion (WAIC) is used to select the most appropriate Bayesian regression model. Finally, the effects of sample size and sample selection on different methods are studied, the results obtained from different priors are compared. The results show that the Bayesian method provides estimations that are more consistent with the test data and has better robustness in given sets of different sample selections, especially in small sample size.\",\"PeriodicalId\":48524,\"journal\":{\"name\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"volume\":\"17 1\",\"pages\":\"521 - 542\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17499518.2022.2119580\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2022.2119580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Uncertainty quantification for characterization of rock elastic modulus based on P-velocity
ABSTRACT The elastic modulus of rock is an important parameter in rock engineering, but the common methods based on laboratory tests are laborious, especially for obtaining the probability distribution of the elastic modulus that is required in reliability-based design. Many scholars have studied the regression model between the elastic modulus and P-wave velocity; however, most previous reports have ignored the characterization of parameter variability and model uncertainty. To address this problem, a large number of granite samples are collected from the Yingliangbao hydropower station (YLB), compressive wave velocity (P-wave velocity) and uniaxial compression tests are carried out in the laboratory. Then, four different regression models based on the frequentist method and Bayesian method are established to estimate the elastic modulus, the normal priors are adopted by prior analysis and the widely applicable information criterion (WAIC) is used to select the most appropriate Bayesian regression model. Finally, the effects of sample size and sample selection on different methods are studied, the results obtained from different priors are compared. The results show that the Bayesian method provides estimations that are more consistent with the test data and has better robustness in given sets of different sample selections, especially in small sample size.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.