包络超代数$ {\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$的实现

IF 0.8 2区 数学 Q2 MATHEMATICS
J. Du, Qiang Fu, Yanan Lin
{"title":"包络超代数$ {\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$的实现","authors":"J. Du, Qiang Fu, Yanan Lin","doi":"10.1017/nmj.2021.11","DOIUrl":null,"url":null,"abstract":"Abstract In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum \n$\\mathfrak {gl}_n$\n via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n of the loop algebra \n$\\widehat {\\mathfrak {gl}}_{m|n}$\n of \n${\\mathfrak {gl}}_{m|n}$\n with those of affine symmetric groups \n${\\widehat {{\\mathfrak S}}_{r}}$\n . Then, we give a BLM type realization of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n via affine Schur superalgebras. The first application of the realization of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n is to determine the action of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n on tensor spaces of the natural representation of \n$\\widehat {\\mathfrak {gl}}_{m|n}$\n . These results in epimorphisms from \n$\\;{\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n to affine Schur superalgebras so that the bridging relation between representations of \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n and \n${\\widehat {{\\mathfrak S}}_{r}}$\n is established. As a second application, we construct a Kostant type \n$\\mathbb Z$\n -form for \n${\\mathcal U}_{\\mathbb Q}(\\widehat {\\mathfrak {gl}}_{m|n})$\n whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"247 1","pages":"516 - 551"},"PeriodicalIF":0.8000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REALIZATION OF THE ENVELOPING SUPERALGEBRA \\n$ {\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\",\"authors\":\"J. Du, Qiang Fu, Yanan Lin\",\"doi\":\"10.1017/nmj.2021.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum \\n$\\\\mathfrak {gl}_n$\\n via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n of the loop algebra \\n$\\\\widehat {\\\\mathfrak {gl}}_{m|n}$\\n of \\n${\\\\mathfrak {gl}}_{m|n}$\\n with those of affine symmetric groups \\n${\\\\widehat {{\\\\mathfrak S}}_{r}}$\\n . Then, we give a BLM type realization of \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n via affine Schur superalgebras. The first application of the realization of \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n is to determine the action of \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n on tensor spaces of the natural representation of \\n$\\\\widehat {\\\\mathfrak {gl}}_{m|n}$\\n . These results in epimorphisms from \\n$\\\\;{\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n to affine Schur superalgebras so that the bridging relation between representations of \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n and \\n${\\\\widehat {{\\\\mathfrak S}}_{r}}$\\n is established. As a second application, we construct a Kostant type \\n$\\\\mathbb Z$\\n -form for \\n${\\\\mathcal U}_{\\\\mathbb Q}(\\\\widehat {\\\\mathfrak {gl}}_{m|n})$\\n whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"247 1\",\"pages\":\"516 - 551\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2021.11\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.11","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在[2]中,Beilinson–Lusztig–MacPherson(BLM)为量子$\mathfrak给出了一个漂亮的实现{gl}_n$通过量子Schur代数的几何设置。我们引入了仿射Schur超代数的概念,并用它们作为连接环代数$\mathfrak{gl}_{m|n}$的泛包络超代数${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m | n})$的结构和表示与仿射对称群${\math frak S}_。然后,我们通过仿射Schur超代数给出了${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m|n})$的BLM型实现。实现${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}_{m|n})$的第一个应用是确定${\math U}_{\mathbb Q}的作用(\wideshat{\math frak{gl}_{m | n}。这些结果导致$\;{\mathcal U}_{\math bb Q}(\mathfrak S})_{r}$的表示之间的桥接关系。作为第二个应用,我们为${\mathcal U}_{\mathbb Q}(\widehat{\mathfrak{gl}}_{m|n})$构造了一个Kostant型$\mathbb Z$形式,其在上述差向同构下的图像正是积分仿射Schur超代数。通过这种方式,我们本质上获得了具有任意特征的超仿射Schur–Weyl对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A REALIZATION OF THE ENVELOPING SUPERALGEBRA $ {\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$
Abstract In [2], Beilinson–Lusztig–MacPherson (BLM) gave a beautiful realization for quantum $\mathfrak {gl}_n$ via a geometric setting of quantum Schur algebras. We introduce the notion of affine Schur superalgebras and use them as a bridge to link the structure and representations of the universal enveloping superalgebra ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ of the loop algebra $\widehat {\mathfrak {gl}}_{m|n}$ of ${\mathfrak {gl}}_{m|n}$ with those of affine symmetric groups ${\widehat {{\mathfrak S}}_{r}}$ . Then, we give a BLM type realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ via affine Schur superalgebras. The first application of the realization of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ is to determine the action of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ on tensor spaces of the natural representation of $\widehat {\mathfrak {gl}}_{m|n}$ . These results in epimorphisms from $\;{\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ to affine Schur superalgebras so that the bridging relation between representations of ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ and ${\widehat {{\mathfrak S}}_{r}}$ is established. As a second application, we construct a Kostant type $\mathbb Z$ -form for ${\mathcal U}_{\mathbb Q}(\widehat {\mathfrak {gl}}_{m|n})$ whose images under the epimorphisms above are exactly the integral affine Schur superalgebras. In this way, we obtain essentially the super affine Schur–Weyl duality in arbitrary characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信