底部浇注/重力搅拌铸造Al6061合金微铣削表面特性的实验与统计研究

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sunil Rawal, Mayank Kumar, A. Sidpara, Jinu Paul
{"title":"底部浇注/重力搅拌铸造Al6061合金微铣削表面特性的实验与统计研究","authors":"Sunil Rawal, Mayank Kumar, A. Sidpara, Jinu Paul","doi":"10.1088/1361-6439/acf675","DOIUrl":null,"url":null,"abstract":"Micro milling offers the best way to create micro channels; however, the burr formation and surface roughness of the micro channel are difficult to control. Micro channel fabrication and their characterization of stir cast Al6061 are rarely investigated. In the present study, Al6061 alloy was processed by the bottom pouring stir casting method. The micro channels were fabricated on a base and stir cast Al6061 alloys using TiSIN-coated micro end mill tools. The influence of micromachining parameters such as spindle speed, feed rate, and depth of cut on burr formation, cutting force, burr size, and surface roughness was investigated. A comparison was made between the findings obtained from the micro milling of the base and stir cast Al6061 alloys. The surface morphology of fabricated micro channels was analysed and correlated with the roughness profile to understand the channel profile and burr formation. The top burr formation mechanism in stir cast Al6061 alloy was investigated in detail. Low feed rate, low depth of cut, and high spindle speed produced the micro channel with fewer burrs, low surface roughness, and low cutting forces. At the optimum parameter, stir cast Al6061 alloy showed an approximate 420%, 16%, and 300% increase in Fy, Fz, and Ra, respectively, as compared to the base Al6061 alloy. Adhesion wear, built-up edge, and microchipping were found to be the main tool wear mechanisms in micro machining of stir cast alloy. This study directs the choice of cutting parameters for the stir cast micro milling process.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and statistical investigation into surface characteristics in micro milling of bottom pouring/gravity stir cast Al6061 alloy\",\"authors\":\"Sunil Rawal, Mayank Kumar, A. Sidpara, Jinu Paul\",\"doi\":\"10.1088/1361-6439/acf675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro milling offers the best way to create micro channels; however, the burr formation and surface roughness of the micro channel are difficult to control. Micro channel fabrication and their characterization of stir cast Al6061 are rarely investigated. In the present study, Al6061 alloy was processed by the bottom pouring stir casting method. The micro channels were fabricated on a base and stir cast Al6061 alloys using TiSIN-coated micro end mill tools. The influence of micromachining parameters such as spindle speed, feed rate, and depth of cut on burr formation, cutting force, burr size, and surface roughness was investigated. A comparison was made between the findings obtained from the micro milling of the base and stir cast Al6061 alloys. The surface morphology of fabricated micro channels was analysed and correlated with the roughness profile to understand the channel profile and burr formation. The top burr formation mechanism in stir cast Al6061 alloy was investigated in detail. Low feed rate, low depth of cut, and high spindle speed produced the micro channel with fewer burrs, low surface roughness, and low cutting forces. At the optimum parameter, stir cast Al6061 alloy showed an approximate 420%, 16%, and 300% increase in Fy, Fz, and Ra, respectively, as compared to the base Al6061 alloy. Adhesion wear, built-up edge, and microchipping were found to be the main tool wear mechanisms in micro machining of stir cast alloy. This study directs the choice of cutting parameters for the stir cast micro milling process.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf675\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf675","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微铣削提供了创建微通道的最佳方式;然而,微通道的毛刺形成和表面粗糙度难以控制。搅拌铸造Al6061的微通道制备及其表征很少被研究。本研究采用底部浇注搅拌铸造的方法对Al6061合金进行了处理。微通道是在基底上制造的,并使用TiSIN涂层的微型立铣刀搅拌铸造Al6061合金。研究了主轴转速、进给速度和切削深度等微加工参数对毛刺形成、切削力、毛刺尺寸和表面粗糙度的影响。对从基体和搅拌铸造Al6061合金的微铣削获得的结果进行了比较。分析了所制备的微通道的表面形态,并将其与粗糙度轮廓相关联,以了解通道轮廓和毛刺的形成。详细研究了搅拌铸造Al6061合金顶部毛刺的形成机理。低进给速率、低切削深度和高主轴速度产生的微通道具有较少的毛刺、较低的表面粗糙度和较低的切削力。在最佳参数下,搅拌铸造Al6061合金的Fy、Fz和Ra与基体Al6061相比分别增加了约420%、16%和300%。在搅拌铸造合金的微细加工中,粘着磨损、堆积边缘和微芯片是主要的刀具磨损机制。该研究为搅拌铸造微细铣削加工中切削参数的选择提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and statistical investigation into surface characteristics in micro milling of bottom pouring/gravity stir cast Al6061 alloy
Micro milling offers the best way to create micro channels; however, the burr formation and surface roughness of the micro channel are difficult to control. Micro channel fabrication and their characterization of stir cast Al6061 are rarely investigated. In the present study, Al6061 alloy was processed by the bottom pouring stir casting method. The micro channels were fabricated on a base and stir cast Al6061 alloys using TiSIN-coated micro end mill tools. The influence of micromachining parameters such as spindle speed, feed rate, and depth of cut on burr formation, cutting force, burr size, and surface roughness was investigated. A comparison was made between the findings obtained from the micro milling of the base and stir cast Al6061 alloys. The surface morphology of fabricated micro channels was analysed and correlated with the roughness profile to understand the channel profile and burr formation. The top burr formation mechanism in stir cast Al6061 alloy was investigated in detail. Low feed rate, low depth of cut, and high spindle speed produced the micro channel with fewer burrs, low surface roughness, and low cutting forces. At the optimum parameter, stir cast Al6061 alloy showed an approximate 420%, 16%, and 300% increase in Fy, Fz, and Ra, respectively, as compared to the base Al6061 alloy. Adhesion wear, built-up edge, and microchipping were found to be the main tool wear mechanisms in micro machining of stir cast alloy. This study directs the choice of cutting parameters for the stir cast micro milling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信