刚性势扰动Dirac算子的谱包络

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
H. Mizutani, N. Schiavone
{"title":"刚性势扰动Dirac算子的谱包络","authors":"H. Mizutani, N. Schiavone","doi":"10.1142/S0129055X22500234","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in generalizing Keller-type eigenvalue estimates for the non-selfadjoint Schr\\\"{o}dinger operator to the Dirac operator, imposing some suitable rigidity conditions on the matricial structure of the potential, without necessarily requiring the smallness of its norm.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral enclosures for Dirac operators perturbed by rigid potentials\",\"authors\":\"H. Mizutani, N. Schiavone\",\"doi\":\"10.1142/S0129055X22500234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are interested in generalizing Keller-type eigenvalue estimates for the non-selfadjoint Schr\\\\\\\"{o}dinger operator to the Dirac operator, imposing some suitable rigidity conditions on the matricial structure of the potential, without necessarily requiring the smallness of its norm.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X22500234\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500234","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们有兴趣推广非自伴Schr的Keller型特征值估计{o}dinger算子到Dirac算子,在势的矩阵结构上施加一些合适的刚性条件,而不一定要求其范数的小性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral enclosures for Dirac operators perturbed by rigid potentials
In this paper we are interested in generalizing Keller-type eigenvalue estimates for the non-selfadjoint Schr\"{o}dinger operator to the Dirac operator, imposing some suitable rigidity conditions on the matricial structure of the potential, without necessarily requiring the smallness of its norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信