{"title":"二十年的自动摊销资源分析","authors":"Jan Hoffmann, Steffen Jost","doi":"10.1017/S0960129521000487","DOIUrl":null,"url":null,"abstract":"Abstract This article gives an overview of automatic amortized resource analysis (AARA), a technique for inferring symbolic resource bounds for programs at compile time. AARA has been introduced by Hofmann and Jost in 2003 as a type system for deriving linear worst-case bounds on the heap-space consumption of first-order functional programs with eager evaluation strategy. Since then AARA has been the subject of dozens of research articles, which extended the analysis to different resource metrics, other evaluation strategies, non-linear bounds, and additional language features. All these works preserved the defining characteristics of the original paper: local inference rules, which reduce bound inference to numeric (usually linear) optimization; a soundness proof with respect to an operational cost semantics; and the support of amortized analysis with the potential method.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two decades of automatic amortized resource analysis\",\"authors\":\"Jan Hoffmann, Steffen Jost\",\"doi\":\"10.1017/S0960129521000487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article gives an overview of automatic amortized resource analysis (AARA), a technique for inferring symbolic resource bounds for programs at compile time. AARA has been introduced by Hofmann and Jost in 2003 as a type system for deriving linear worst-case bounds on the heap-space consumption of first-order functional programs with eager evaluation strategy. Since then AARA has been the subject of dozens of research articles, which extended the analysis to different resource metrics, other evaluation strategies, non-linear bounds, and additional language features. All these works preserved the defining characteristics of the original paper: local inference rules, which reduce bound inference to numeric (usually linear) optimization; a soundness proof with respect to an operational cost semantics; and the support of amortized analysis with the potential method.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129521000487\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129521000487","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Two decades of automatic amortized resource analysis
Abstract This article gives an overview of automatic amortized resource analysis (AARA), a technique for inferring symbolic resource bounds for programs at compile time. AARA has been introduced by Hofmann and Jost in 2003 as a type system for deriving linear worst-case bounds on the heap-space consumption of first-order functional programs with eager evaluation strategy. Since then AARA has been the subject of dozens of research articles, which extended the analysis to different resource metrics, other evaluation strategies, non-linear bounds, and additional language features. All these works preserved the defining characteristics of the original paper: local inference rules, which reduce bound inference to numeric (usually linear) optimization; a soundness proof with respect to an operational cost semantics; and the support of amortized analysis with the potential method.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.