通过衡量成分股之间的联系来预测股票指数的波动性*

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE
Yue Qiu, Tian Xie, Jun Yu, Qiankun Zhou
{"title":"通过衡量成分股之间的联系来预测股票指数的波动性*","authors":"Yue Qiu, Tian Xie, Jun Yu, Qiankun Zhou","doi":"10.1093/JJFINEC/NBAA005","DOIUrl":null,"url":null,"abstract":"\n The linkage among the realized volatilities of component stocks is important when modeling and forecasting the relevant index volatility. In this article, the linkage is measured via an extended Common Correlated Effects (CCEs) approach under a panel heterogeneous autoregression model where unobserved common factors in errors are assumed. Consistency of the CCE estimator is obtained. The common factors are extracted using the principal component analysis. Empirical studies show that realized volatility models exploiting the linkage effects lead to significantly better out-of-sample forecast performance, for example, an up to 32% increase in the pseudo R2. We also conduct various forecasting exercises on the linkage variables that compare conventional regression methods with popular machine learning techniques.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/JJFINEC/NBAA005","citationCount":"3","resultStr":"{\"title\":\"Forecasting Equity Index Volatility by Measuring the Linkage among Component Stocks*\",\"authors\":\"Yue Qiu, Tian Xie, Jun Yu, Qiankun Zhou\",\"doi\":\"10.1093/JJFINEC/NBAA005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The linkage among the realized volatilities of component stocks is important when modeling and forecasting the relevant index volatility. In this article, the linkage is measured via an extended Common Correlated Effects (CCEs) approach under a panel heterogeneous autoregression model where unobserved common factors in errors are assumed. Consistency of the CCE estimator is obtained. The common factors are extracted using the principal component analysis. Empirical studies show that realized volatility models exploiting the linkage effects lead to significantly better out-of-sample forecast performance, for example, an up to 32% increase in the pseudo R2. We also conduct various forecasting exercises on the linkage variables that compare conventional regression methods with popular machine learning techniques.\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/JJFINEC/NBAA005\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/JJFINEC/NBAA005\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/JJFINEC/NBAA005","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

在建模和预测相关指数波动性时,成分股的已实现波动性之间的联系很重要。在本文中,在面板异质自回归模型下,通过扩展的共同相关效应(CCE)方法来测量联系,其中假设了未观察到的误差中的共同因素。获得了CCE估计器的一致性。使用主成分分析提取共同因素。实证研究表明,利用关联效应的已实现波动率模型可以显著改善样本外预测性能,例如,伪R2增加32%。我们还对链接变量进行了各种预测练习,将传统的回归方法与流行的机器学习技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Equity Index Volatility by Measuring the Linkage among Component Stocks*
The linkage among the realized volatilities of component stocks is important when modeling and forecasting the relevant index volatility. In this article, the linkage is measured via an extended Common Correlated Effects (CCEs) approach under a panel heterogeneous autoregression model where unobserved common factors in errors are assumed. Consistency of the CCE estimator is obtained. The common factors are extracted using the principal component analysis. Empirical studies show that realized volatility models exploiting the linkage effects lead to significantly better out-of-sample forecast performance, for example, an up to 32% increase in the pseudo R2. We also conduct various forecasting exercises on the linkage variables that compare conventional regression methods with popular machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信