降维的分位数治疗效果估计

IF 0.7 Q3 STATISTICS & PROBABILITY
Ying Zhang, Lei Wang, Menggang Yu, Jun Shao
{"title":"降维的分位数治疗效果估计","authors":"Ying Zhang, Lei Wang, Menggang Yu, Jun Shao","doi":"10.1080/24754269.2019.1696645","DOIUrl":null,"url":null,"abstract":"Quantile treatment effects can be important causal estimands in evaluation of biomedical treatments or interventions for health outcomes such as medical cost and utilisation. We consider their estimation in observational studies with many possible covariates under the assumption that treatment and potential outcomes are independent conditional on all covariates. To obtain valid and efficient treatment effect estimators, we replace the set of all covariates by lower dimensional sets for estimation of the quantiles of potential outcomes. These lower dimensional sets are obtained using sufficient dimension reduction tools and are outcome specific. We justify our choice from efficiency point of view. We prove the asymptotic normality of our estimators and our theory is complemented by some simulation results and an application to data from the University of Wisconsin Health Accountable Care Organization.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"4 1","pages":"202 - 213"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2019.1696645","citationCount":"2","resultStr":"{\"title\":\"Quantile treatment effect estimation with dimension reduction\",\"authors\":\"Ying Zhang, Lei Wang, Menggang Yu, Jun Shao\",\"doi\":\"10.1080/24754269.2019.1696645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantile treatment effects can be important causal estimands in evaluation of biomedical treatments or interventions for health outcomes such as medical cost and utilisation. We consider their estimation in observational studies with many possible covariates under the assumption that treatment and potential outcomes are independent conditional on all covariates. To obtain valid and efficient treatment effect estimators, we replace the set of all covariates by lower dimensional sets for estimation of the quantiles of potential outcomes. These lower dimensional sets are obtained using sufficient dimension reduction tools and are outcome specific. We justify our choice from efficiency point of view. We prove the asymptotic normality of our estimators and our theory is complemented by some simulation results and an application to data from the University of Wisconsin Health Accountable Care Organization.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"4 1\",\"pages\":\"202 - 213\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24754269.2019.1696645\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2019.1696645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2019.1696645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

量化治疗效果可能是评估生物医学治疗或干预健康结果(如医疗成本和利用率)的重要因果估计。我们在具有许多可能协变量的观察性研究中考虑了他们的估计,假设治疗和潜在结果独立于所有协变量。为了获得有效的治疗效果估计量,我们用低维集合代替所有协变量的集合来估计潜在结果的分位数。这些低维集合是使用足够的降维工具获得的,并且是特定于结果的。我们从效率的角度证明我们的选择是合理的。我们证明了我们的估计量的渐近正态性,我们的理论得到了一些模拟结果的补充,并应用于威斯康星大学卫生责任护理组织的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile treatment effect estimation with dimension reduction
Quantile treatment effects can be important causal estimands in evaluation of biomedical treatments or interventions for health outcomes such as medical cost and utilisation. We consider their estimation in observational studies with many possible covariates under the assumption that treatment and potential outcomes are independent conditional on all covariates. To obtain valid and efficient treatment effect estimators, we replace the set of all covariates by lower dimensional sets for estimation of the quantiles of potential outcomes. These lower dimensional sets are obtained using sufficient dimension reduction tools and are outcome specific. We justify our choice from efficiency point of view. We prove the asymptotic normality of our estimators and our theory is complemented by some simulation results and an application to data from the University of Wisconsin Health Accountable Care Organization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信