{"title":"Laguerre多项式扩张的不可约性","authors":"S. Laishram, Saranya G. Nair, T. Shorey","doi":"10.7169/facm/1748","DOIUrl":null,"url":null,"abstract":"For integers $a_0,a_1,\\ldots,a_n$ with $|a_0a_n|=1$ and either $\\alpha =u$ with $1\\leq u \\leq 50$ or $\\alpha=u+ \\frac{1}{2}$ with $1 \\leq u \\leq 45$, we prove that $\\psi_n^{(\\alpha)}(x;a_0,a_1,\\cdots,a_n)$ is irreducible except for an explicit finite set of pairs $(u,n)$. Furthermore all the exceptions other than $n=2^{12},\\alpha=89/2$ are necessary. The above result with $0\\leq\\alpha \\leq 10$ is due to Filaseta, Finch and Leidy and with $\\alpha \\in \\{-1/2,1/2\\}$ due to Schur.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Irreducibility of extensions of Laguerre polynomials\",\"authors\":\"S. Laishram, Saranya G. Nair, T. Shorey\",\"doi\":\"10.7169/facm/1748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For integers $a_0,a_1,\\\\ldots,a_n$ with $|a_0a_n|=1$ and either $\\\\alpha =u$ with $1\\\\leq u \\\\leq 50$ or $\\\\alpha=u+ \\\\frac{1}{2}$ with $1 \\\\leq u \\\\leq 45$, we prove that $\\\\psi_n^{(\\\\alpha)}(x;a_0,a_1,\\\\cdots,a_n)$ is irreducible except for an explicit finite set of pairs $(u,n)$. Furthermore all the exceptions other than $n=2^{12},\\\\alpha=89/2$ are necessary. The above result with $0\\\\leq\\\\alpha \\\\leq 10$ is due to Filaseta, Finch and Leidy and with $\\\\alpha \\\\in \\\\{-1/2,1/2\\\\}$ due to Schur.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
对于整数$a_0,a_1,\ldots,a_n$与$|a_0a_n|=1$, $\alpha =u$与$1\leq u \leq 50$或$\alpha=u+ \frac{1}{2}$与$1 \leq u \leq 45$,我们证明了$\psi_n^{(\alpha)}(x;a_0,a_1,\cdots,a_n)$除了一个显式有限对集$(u,n)$外是不可约的。此外,除了$n=2^{12},\alpha=89/2$之外的所有例外都是必要的。上面的结果与$0\leq\alpha \leq 10$是由于Filaseta、Finch和Leidy,与$\alpha \in \{-1/2,1/2\}$是由于Schur。
Irreducibility of extensions of Laguerre polynomials
For integers $a_0,a_1,\ldots,a_n$ with $|a_0a_n|=1$ and either $\alpha =u$ with $1\leq u \leq 50$ or $\alpha=u+ \frac{1}{2}$ with $1 \leq u \leq 45$, we prove that $\psi_n^{(\alpha)}(x;a_0,a_1,\cdots,a_n)$ is irreducible except for an explicit finite set of pairs $(u,n)$. Furthermore all the exceptions other than $n=2^{12},\alpha=89/2$ are necessary. The above result with $0\leq\alpha \leq 10$ is due to Filaseta, Finch and Leidy and with $\alpha \in \{-1/2,1/2\}$ due to Schur.