通过符号计算发现多个多对数方程

IF 0.4 Q4 MATHEMATICS, APPLIED
Andrei Matveiakin
{"title":"通过符号计算发现多个多对数方程","authors":"Andrei Matveiakin","doi":"10.1145/3511528.3511539","DOIUrl":null,"url":null,"abstract":"We discuss how symbolic computations can be used to find functional equations for multiple polylogarithms and prove parts of Goncharov's depth conjecture. We present a custom-built C++ toolkit for polylogarithm symbol manipulations in Lie coalgebras and show how this approach compares favorably to the alternatives in terms of performance.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"55 1","pages":"112 - 116"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering multiple polylogarithm equations via symbolic computations\",\"authors\":\"Andrei Matveiakin\",\"doi\":\"10.1145/3511528.3511539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss how symbolic computations can be used to find functional equations for multiple polylogarithms and prove parts of Goncharov's depth conjecture. We present a custom-built C++ toolkit for polylogarithm symbol manipulations in Lie coalgebras and show how this approach compares favorably to the alternatives in terms of performance.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"55 1\",\"pages\":\"112 - 116\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511528.3511539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511528.3511539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了如何使用符号计算来找到多个多对数的函数方程,并证明了Goncharov深度猜想的部分内容。我们提出了一个定制的C++工具包,用于李代数中的多对数符号操作,并展示了这种方法在性能方面与其他方法相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering multiple polylogarithm equations via symbolic computations
We discuss how symbolic computations can be used to find functional equations for multiple polylogarithms and prove parts of Goncharov's depth conjecture. We present a custom-built C++ toolkit for polylogarithm symbol manipulations in Lie coalgebras and show how this approach compares favorably to the alternatives in terms of performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信