一种新型泡沫夹层管颈胀式高效吸能器

IF 2.6 4区 工程技术 Q2 MECHANICS
Haoyuan Guo, Jianxun Zhang
{"title":"一种新型泡沫夹层管颈胀式高效吸能器","authors":"Haoyuan Guo, Jianxun Zhang","doi":"10.1115/1.4062843","DOIUrl":null,"url":null,"abstract":"\n Foam sandwich tube is composed of two tubes and a lightweight foam core possessing various advantages, i.e. low density, excellent mitigation performance and energy absorption, etc. With the hope of enhancing the load bearing and energy absorption capacity of energy absorbers, a novel efficient energy absorber composing of axial necking-expansion deformation mode for sandwich circular tube with metal foam core (SCMF-Tube) by an inner-outer conical-cylindrical die is proposed. Considering deformation modes including necking, stretching, bending and strain hardening of metal tubes as well as densification of the metal foam core, we established an analytical model of necking-expansion deformation for the SCMF-Tube. Then, FE simulations are conducted. Analytical deformation modes, load-displacement curves and bending radii all agree well with the FE results. Effects of material property and geometry on the necking-expansion deformation of SCMF-Tubes are discussed in detail based on the validated analytical model. Adjusting parameters, such as the wall thickness ratio of the inner tube to the outer tube and the maximum diameter of the die can improve the load bearing and energy absorption capacity of the novel energy absorber. Finally, the specific energy absorption (SEA) of the SCMF-Tube under necking-expansion deformation is 68% higher than that of the circular metal tube under expansion deformation.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel efficient energy absorber with necking-expansion of foam sandwich tubes\",\"authors\":\"Haoyuan Guo, Jianxun Zhang\",\"doi\":\"10.1115/1.4062843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Foam sandwich tube is composed of two tubes and a lightweight foam core possessing various advantages, i.e. low density, excellent mitigation performance and energy absorption, etc. With the hope of enhancing the load bearing and energy absorption capacity of energy absorbers, a novel efficient energy absorber composing of axial necking-expansion deformation mode for sandwich circular tube with metal foam core (SCMF-Tube) by an inner-outer conical-cylindrical die is proposed. Considering deformation modes including necking, stretching, bending and strain hardening of metal tubes as well as densification of the metal foam core, we established an analytical model of necking-expansion deformation for the SCMF-Tube. Then, FE simulations are conducted. Analytical deformation modes, load-displacement curves and bending radii all agree well with the FE results. Effects of material property and geometry on the necking-expansion deformation of SCMF-Tubes are discussed in detail based on the validated analytical model. Adjusting parameters, such as the wall thickness ratio of the inner tube to the outer tube and the maximum diameter of the die can improve the load bearing and energy absorption capacity of the novel energy absorber. Finally, the specific energy absorption (SEA) of the SCMF-Tube under necking-expansion deformation is 68% higher than that of the circular metal tube under expansion deformation.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062843\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062843","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

泡沫夹层管由两根管和一个轻质泡沫芯组成,具有密度低、缓冲性能好、吸能等优点。为了提高吸能器的承载能力和吸能能力,提出了一种由内外锥形圆柱模具组成的金属泡沫芯夹芯圆管(SCMF-Tube)轴向结胀型高效吸能器。考虑金属管的颈缩、拉伸、弯曲和应变硬化变形模式以及金属泡沫芯的致密化,建立了scmf管的颈缩-膨胀变形解析模型。然后进行了有限元模拟。解析变形模式、荷载-位移曲线和弯曲半径与有限元结果吻合较好。在验证的解析模型基础上,详细讨论了材料性能和几何形状对scmf管颈胀变形的影响。调节内管与外管壁厚比、模具最大直径等参数,可以提高新型吸能器的承载和吸能能力。最后,SCMF-Tube在颈部膨胀变形下的比能吸收(SEA)比圆形金属管在膨胀变形下的比能吸收(SEA)高68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel efficient energy absorber with necking-expansion of foam sandwich tubes
Foam sandwich tube is composed of two tubes and a lightweight foam core possessing various advantages, i.e. low density, excellent mitigation performance and energy absorption, etc. With the hope of enhancing the load bearing and energy absorption capacity of energy absorbers, a novel efficient energy absorber composing of axial necking-expansion deformation mode for sandwich circular tube with metal foam core (SCMF-Tube) by an inner-outer conical-cylindrical die is proposed. Considering deformation modes including necking, stretching, bending and strain hardening of metal tubes as well as densification of the metal foam core, we established an analytical model of necking-expansion deformation for the SCMF-Tube. Then, FE simulations are conducted. Analytical deformation modes, load-displacement curves and bending radii all agree well with the FE results. Effects of material property and geometry on the necking-expansion deformation of SCMF-Tubes are discussed in detail based on the validated analytical model. Adjusting parameters, such as the wall thickness ratio of the inner tube to the outer tube and the maximum diameter of the die can improve the load bearing and energy absorption capacity of the novel energy absorber. Finally, the specific energy absorption (SEA) of the SCMF-Tube under necking-expansion deformation is 68% higher than that of the circular metal tube under expansion deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信