V. P. Belobrov, M. Lebedeva, K. Abrosimov, A. Grebennikov, E. Torochkov, A. I. Ryashko
{"title":"磷石膏堆初始成土作用的显微诊断","authors":"V. P. Belobrov, M. Lebedeva, K. Abrosimov, A. Grebennikov, E. Torochkov, A. I. Ryashko","doi":"10.3232/SJSS.2018.V8.N2.04","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the study of initial pedogenesis on phosphogypsum dump rocks under dry steppe bioclimatic conditions (Balakovo, Saratov Region, Russia). It was shown that a soil crust about 3 cm thick was formed at the dump surface as a result of natural pedogenic processes over a period of 20-30 years. Such soil crusts act to cement the surface and protect the dump material from deflation and water erosion. The crust was shown to consist of two parts that can be distinguished by morphological features: an upper part (about 2 cm thick) of a more firmly bound material more grey in colour and a lower part (about 1 cm thick) with a looser consistency and lighter colour. The structural organisation is primarily determined by the presence of live roots of grasses and mosses, which is characteristic of a biogenic crust. The two parts of the crust were characterized at both macro- and micro-scales, by use of thin sections and tomographic imagery. The presence of humification features and porosity observed within the crust allowed for the diagnostics of initial pedogenesis. ","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microdiagnostics of initial pedogenesis on a phosphogypsum dump\",\"authors\":\"V. P. Belobrov, M. Lebedeva, K. Abrosimov, A. Grebennikov, E. Torochkov, A. I. Ryashko\",\"doi\":\"10.3232/SJSS.2018.V8.N2.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results of the study of initial pedogenesis on phosphogypsum dump rocks under dry steppe bioclimatic conditions (Balakovo, Saratov Region, Russia). It was shown that a soil crust about 3 cm thick was formed at the dump surface as a result of natural pedogenic processes over a period of 20-30 years. Such soil crusts act to cement the surface and protect the dump material from deflation and water erosion. The crust was shown to consist of two parts that can be distinguished by morphological features: an upper part (about 2 cm thick) of a more firmly bound material more grey in colour and a lower part (about 1 cm thick) with a looser consistency and lighter colour. The structural organisation is primarily determined by the presence of live roots of grasses and mosses, which is characteristic of a biogenic crust. The two parts of the crust were characterized at both macro- and micro-scales, by use of thin sections and tomographic imagery. The presence of humification features and porosity observed within the crust allowed for the diagnostics of initial pedogenesis. \",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3232/SJSS.2018.V8.N2.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2018.V8.N2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Microdiagnostics of initial pedogenesis on a phosphogypsum dump
This paper presents the results of the study of initial pedogenesis on phosphogypsum dump rocks under dry steppe bioclimatic conditions (Balakovo, Saratov Region, Russia). It was shown that a soil crust about 3 cm thick was formed at the dump surface as a result of natural pedogenic processes over a period of 20-30 years. Such soil crusts act to cement the surface and protect the dump material from deflation and water erosion. The crust was shown to consist of two parts that can be distinguished by morphological features: an upper part (about 2 cm thick) of a more firmly bound material more grey in colour and a lower part (about 1 cm thick) with a looser consistency and lighter colour. The structural organisation is primarily determined by the presence of live roots of grasses and mosses, which is characteristic of a biogenic crust. The two parts of the crust were characterized at both macro- and micro-scales, by use of thin sections and tomographic imagery. The presence of humification features and porosity observed within the crust allowed for the diagnostics of initial pedogenesis.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.