关于满足s强accr *的模的一些结果

Q2 Mathematics
S. Visweswaran, Premkumar T. Lalchandani
{"title":"关于满足s强accr *的模的一些结果","authors":"S. Visweswaran,&nbsp;Premkumar T. Lalchandani","doi":"10.1016/j.ajmsc.2019.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let <span><math><mi>R</mi></math></span> be a ring and let <span><math><mi>S</mi></math></span> be a multiplicatively closed subset of <span><math><mi>R</mi></math></span>. We say that a module <span><math><mi>M</mi></math></span> over <span><math><mi>R</mi></math></span> <em>satisfies</em><span><math><mi>S</mi></math></span><em>- strong</em><span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if for every submodule <span><math><mi>N</mi></math></span> of <span><math><mi>M</mi></math></span> and for every sequence <span><math><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo></math></span> of elements of <span><math><mi>R</mi></math></span>, the ascending sequence of submodules <span><math><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mo>⋯</mo><mspace></mspace></math></span> is <span><math><mi>S</mi></math></span>-stationary. That is, there exist <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> such that <span><math><mi>s</mi><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>. We say that a ring <span><math><mi>R</mi></math></span> <em>satisfies</em> <span><math><mi>S</mi></math></span><em>- strong</em> <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if <span><math><mi>R</mi></math></span> regarded as a module over <span><math><mi>R</mi></math></span> satisfies <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The aim of this article is to study some basic properties of rings and modules satisfying <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"25 2","pages":"Pages 145-155"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.02.004","citationCount":"5","resultStr":"{\"title\":\"Some results on modules satisfying S-strong accr∗\",\"authors\":\"S. Visweswaran,&nbsp;Premkumar T. Lalchandani\",\"doi\":\"10.1016/j.ajmsc.2019.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let <span><math><mi>R</mi></math></span> be a ring and let <span><math><mi>S</mi></math></span> be a multiplicatively closed subset of <span><math><mi>R</mi></math></span>. We say that a module <span><math><mi>M</mi></math></span> over <span><math><mi>R</mi></math></span> <em>satisfies</em><span><math><mi>S</mi></math></span><em>- strong</em><span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if for every submodule <span><math><mi>N</mi></math></span> of <span><math><mi>M</mi></math></span> and for every sequence <span><math><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>&gt;</mo></math></span> of elements of <span><math><mi>R</mi></math></span>, the ascending sequence of submodules <span><math><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mo>⋯</mo><mspace></mspace></math></span> is <span><math><mi>S</mi></math></span>-stationary. That is, there exist <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> such that <span><math><mi>s</mi><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>. We say that a ring <span><math><mi>R</mi></math></span> <em>satisfies</em> <span><math><mi>S</mi></math></span><em>- strong</em> <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if <span><math><mi>R</mi></math></span> regarded as a module over <span><math><mi>R</mi></math></span> satisfies <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The aim of this article is to study some basic properties of rings and modules satisfying <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\"25 2\",\"pages\":\"Pages 145-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.02.004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319516617302803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319516617302803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

本文中考虑的环是具有恒等式的可交换环。假定模块是统一的。设R是一个环,S是R的一个乘闭子集。我们说模M在R上满足-强accr *,如果对M的每一个子模N和对每一个序列<rn>对于R的元素,子模块(N:Mr1)、(N:Mr1r2)、(N:Mr1r2r3)的升序为s平稳。即存在k∈N, s∈s,使得对于所有N≥k, s(N:Mr1⋯rn)≤N:Mr1⋯rk。我们说环R满足S强accr *,如果R作为R上的模满足S强accr *。本文的目的是研究满足s强accr *的环和模的一些基本性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on modules satisfying S-strong accr∗

The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let R be a ring and let S be a multiplicatively closed subset of R. We say that a module M over R satisfiesS- strongaccr if for every submodule N of M and for every sequence <rn> of elements of R, the ascending sequence of submodules (N:Mr1)(N:Mr1r2)(N:Mr1r2r3) is S-stationary. That is, there exist kN and sS such that s(N:Mr1rn)(N:Mr1rk) for all nk. We say that a ring R satisfies S- strong accr if R regarded as a module over R satisfies S-strong accr. The aim of this article is to study some basic properties of rings and modules satisfying S-strong accr.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信