{"title":"关于满足s强accr *的模的一些结果","authors":"S. Visweswaran, Premkumar T. Lalchandani","doi":"10.1016/j.ajmsc.2019.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let <span><math><mi>R</mi></math></span> be a ring and let <span><math><mi>S</mi></math></span> be a multiplicatively closed subset of <span><math><mi>R</mi></math></span>. We say that a module <span><math><mi>M</mi></math></span> over <span><math><mi>R</mi></math></span> <em>satisfies</em><span><math><mi>S</mi></math></span><em>- strong</em><span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if for every submodule <span><math><mi>N</mi></math></span> of <span><math><mi>M</mi></math></span> and for every sequence <span><math><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo></math></span> of elements of <span><math><mi>R</mi></math></span>, the ascending sequence of submodules <span><math><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mo>⋯</mo><mspace></mspace></math></span> is <span><math><mi>S</mi></math></span>-stationary. That is, there exist <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> such that <span><math><mi>s</mi><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>. We say that a ring <span><math><mi>R</mi></math></span> <em>satisfies</em> <span><math><mi>S</mi></math></span><em>- strong</em> <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if <span><math><mi>R</mi></math></span> regarded as a module over <span><math><mi>R</mi></math></span> satisfies <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The aim of this article is to study some basic properties of rings and modules satisfying <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":"25 2","pages":"Pages 145-155"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.02.004","citationCount":"5","resultStr":"{\"title\":\"Some results on modules satisfying S-strong accr∗\",\"authors\":\"S. Visweswaran, Premkumar T. Lalchandani\",\"doi\":\"10.1016/j.ajmsc.2019.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let <span><math><mi>R</mi></math></span> be a ring and let <span><math><mi>S</mi></math></span> be a multiplicatively closed subset of <span><math><mi>R</mi></math></span>. We say that a module <span><math><mi>M</mi></math></span> over <span><math><mi>R</mi></math></span> <em>satisfies</em><span><math><mi>S</mi></math></span><em>- strong</em><span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if for every submodule <span><math><mi>N</mi></math></span> of <span><math><mi>M</mi></math></span> and for every sequence <span><math><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>></mo></math></span> of elements of <span><math><mi>R</mi></math></span>, the ascending sequence of submodules <span><math><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mo>⋯</mo><mspace></mspace></math></span> is <span><math><mi>S</mi></math></span>-stationary. That is, there exist <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>s</mi><mo>∈</mo><mi>S</mi></math></span> such that <span><math><mi>s</mi><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>⊆</mo><mrow><mo>(</mo><mi>N</mi><msub><mrow><mo>:</mo></mrow><mrow><mi>M</mi></mrow></msub><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mi>k</mi></math></span>. We say that a ring <span><math><mi>R</mi></math></span> <em>satisfies</em> <span><math><mi>S</mi></math></span><em>- strong</em> <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> if <span><math><mi>R</mi></math></span> regarded as a module over <span><math><mi>R</mi></math></span> satisfies <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. The aim of this article is to study some basic properties of rings and modules satisfying <span><math><mi>S</mi></math></span>-strong <span><math><mi>a</mi><mi>c</mi><mi>c</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\"25 2\",\"pages\":\"Pages 145-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ajmsc.2019.02.004\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319516617302803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319516617302803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
The rings considered in this article are commutative with identity. Modules are assumed to be unitary. Let be a ring and let be a multiplicatively closed subset of . We say that a module over satisfies- strong if for every submodule of and for every sequence of elements of , the ascending sequence of submodules is -stationary. That is, there exist and such that for all . We say that a ring satisfies- strong if regarded as a module over satisfies -strong . The aim of this article is to study some basic properties of rings and modules satisfying -strong .