具有最小约束违反的优化

IF 1.2 Q2 MATHEMATICS, APPLIED
Yuhong Dai, Liwei Zhang
{"title":"具有最小约束违反的优化","authors":"Yuhong Dai, Liwei Zhang","doi":"10.4208/csiam-am.2020-0043","DOIUrl":null,"url":null,"abstract":"Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization with Least Constraint Violation\",\"authors\":\"Yuhong Dai, Liwei Zhang\",\"doi\":\"10.4208/csiam-am.2020-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.2020-0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

关于约束优化的理论和算法的研究通常假设优化问题的可行域是非空的。然而,在许多重要的实际优化问题中,其可行域是否为非空是未知的,并且更倾向于找到具有最小约束违反的目标函数的优化器。处理这些问题的一种自然方法是将约束优化问题扩展为在具有最小约束违反的点集上优化目标函数的问题。首先,当原始问题是具有可能的不一致圆锥约束的凸优化问题时,证明了具有最小约束违反的最小化问题是Lipschitz等式约束的优化问题,并且可以将其重新表述为MPEC问题。其次,对于可能存在不一致约束的非线性规划问题,给出了MPCC问题的各种类型的平稳点,该问题等价于具有最小约束违反的最小化问题,并给出了一个优雅的必要最优性条件,称为L平稳条件,由Lipschitz连续优化的经典最优性理论建立。最后,构造了非线性规划情况下的光滑Fischer-Burmeister函数方法,以解决具有最小约束违反的目标函数最小化问题。证明了当正光滑参数接近零时,KKT点映射的外极限中的任何点都是等价MPCC问题的L平稳点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization with Least Constraint Violation
Study about theory and algorithms for constrained optimization usually assumes that the feasible region of the optimization problem is nonempty. However, there are many important practical optimization problems whose feasible regions are not known to be nonempty or not, and optimizers of the objective function with the least constraint violation prefer to be found. A natural way for dealing with these problems is to extend the constrained optimization problem as the one optimizing the objective function over the set of points with the least constraint violation. Firstly, the minimization problem with least constraint violation is proved to be an Lipschitz equality constrained optimization problem when the original problem is a convex optimization problem with possible inconsistent conic constraints, and it can be reformulated as an MPEC problem. Secondly, for nonlinear programming problems with possible inconsistent constraints, various types of stationary points are presented for the MPCC problem which is equivalent to the minimization problem with least constraint violation, and an elegant necessary optimality condition, named as L-stationary condition, is established from the classical optimality theory of Lipschitz continuous optimization. Finally, the smoothing Fischer-Burmeister function method for nonlinear programming case is constructed for solving the problem minimizing the objective function with the least constraint violation. It is demonstrated that, when the positive smoothing parameter approaches to zero, any point in the outer limit of the KKT-point mapping is an L-stationary point of the equivalent MPCC problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信