关于随机微分方程半离散方法的渐近稳定性的注记

IF 0.8 Q3 STATISTICS & PROBABILITY
N. Halidias, I. Stamatiou
{"title":"关于随机微分方程半离散方法的渐近稳定性的注记","authors":"N. Halidias, I. Stamatiou","doi":"10.1515/mcma-2022-2102","DOIUrl":null,"url":null,"abstract":"Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"13 - 25"},"PeriodicalIF":0.8000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A note on the asymptotic stability of the semi-discrete method for stochastic differential equations\",\"authors\":\"N. Halidias, I. Stamatiou\",\"doi\":\"10.1515/mcma-2022-2102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\\\\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\\\\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"13 - 25\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

研究了随机微分方程半离散(SD)数值逼近方法的渐近稳定性。最近,我们检验了截断SD方法的函数函数的收敛阶数,证明了它可以任意接近于1 2 {\mathcal{L}^{2}};看到我。S. Stamatiou和N. Halidias,随机微分方程半离散方法的收敛率,理论理论。[j].化工学报,2019,(2):89-100。我们证明截断SD方法能够保持底层SDE的渐近稳定性。在一个数值例子的激励下,我们还提出了一种不同的SD方案,使用原始SDE的Lamperti变换。数值模拟支持我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the asymptotic stability of the semi-discrete method for stochastic differential equations
Abstract We study the asymptotic stability of the semi-discrete (SD) numerical method for the approximation of stochastic differential equations. Recently, we examined the order of ℒ 2 {\mathcal{L}^{2}} -convergence of the truncated SD method and showed that it can be arbitrarily close to 1 2 {\frac{1}{2}} ; see [I. S. Stamatiou and N. Halidias, Convergence rates of the semi-discrete method for stochastic differential equations, Theory Stoch. Process. 24 2019, 2, 89–100]. We show that the truncated SD method is able to preserve the asymptotic stability of the underlying SDE. Motivated by a numerical example, we also propose a different SD scheme, using the Lamperti transformation to the original SDE. Numerical simulations support our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信