用土壤地球化学方法确定斑岩铜矿床侵蚀程度

IF 0.9 4区 材料科学 Q3 Materials Science
F. Moradpouri, S. Ahmadi, R. Ghaedrahmati, K. Barani
{"title":"用土壤地球化学方法确定斑岩铜矿床侵蚀程度","authors":"F. Moradpouri, S. Ahmadi, R. Ghaedrahmati, K. Barani","doi":"10.17159/2411-9717/2029/2023","DOIUrl":null,"url":null,"abstract":"As exploration is time-consuming, costly, and risky, determination of the erosion surface of a metalliferous deposit before geophysical surveying and exploration drilling might be very helpful. Geochemical haloes can be used to determine whether the erosion surface is supra-ore or sub-ore and thus reduce the risk of exploration operations. The aim of this investigation is to determine the erosion surface of the North ROK porphyry deposit (NRPD) in northwestern British Columbia in Canada using linear productivity (LP), which is the content of an element defining the halo multiplied by the width of the halo. A total of 2045 soil samples from the B horizon were analysed using ICP-MS for 36 elements, including Cu, Mo, Pb, Zn, Au, As, Ag, Ni, Co, Fe, and Mn. The data-set was snalysed to obtain the statistical parameters and the elements Cu, Mo, Pb, and Zn were chosen to calculate the linear productivity and the total linear productivity. These four elements were modelled using probability plots to identify and separate subpopulations in terms of anomalous haloes and background, including the threshold values of each subpopulation. The results of the probability plot modelling and thresholds values were then used to map the distribution of each element in a GIS to calculate the linear productivity. The total linear productivity indicated that the erosion surface is supra-ore. Finally, a 3D orebody model of the Cu, Mo, Pb, and Zn distributions was constructed using borehole data and used to validate the results.","PeriodicalId":17492,"journal":{"name":"Journal of The South African Institute of Mining and Metallurgy","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determination of the erosion level of a porphyry copper deposit using soil geochemistry\",\"authors\":\"F. Moradpouri, S. Ahmadi, R. Ghaedrahmati, K. Barani\",\"doi\":\"10.17159/2411-9717/2029/2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As exploration is time-consuming, costly, and risky, determination of the erosion surface of a metalliferous deposit before geophysical surveying and exploration drilling might be very helpful. Geochemical haloes can be used to determine whether the erosion surface is supra-ore or sub-ore and thus reduce the risk of exploration operations. The aim of this investigation is to determine the erosion surface of the North ROK porphyry deposit (NRPD) in northwestern British Columbia in Canada using linear productivity (LP), which is the content of an element defining the halo multiplied by the width of the halo. A total of 2045 soil samples from the B horizon were analysed using ICP-MS for 36 elements, including Cu, Mo, Pb, Zn, Au, As, Ag, Ni, Co, Fe, and Mn. The data-set was snalysed to obtain the statistical parameters and the elements Cu, Mo, Pb, and Zn were chosen to calculate the linear productivity and the total linear productivity. These four elements were modelled using probability plots to identify and separate subpopulations in terms of anomalous haloes and background, including the threshold values of each subpopulation. The results of the probability plot modelling and thresholds values were then used to map the distribution of each element in a GIS to calculate the linear productivity. The total linear productivity indicated that the erosion surface is supra-ore. Finally, a 3D orebody model of the Cu, Mo, Pb, and Zn distributions was constructed using borehole data and used to validate the results.\",\"PeriodicalId\":17492,\"journal\":{\"name\":\"Journal of The South African Institute of Mining and Metallurgy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The South African Institute of Mining and Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17159/2411-9717/2029/2023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The South African Institute of Mining and Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17159/2411-9717/2029/2023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

由于勘探费时、昂贵且有风险,在地球物理测量和勘探钻探之前确定含金属矿床的侵蚀面可能是非常有用的。地球化学晕可以用来确定侵蚀面是上矿面还是下矿面,从而降低勘探作业的风险。本次调查的目的是利用线性生产力(LP)来确定加拿大不列颠哥伦比亚省西北部北韩斑岩矿床(NRPD)的侵蚀面,线性生产力是定义晕的元素含量乘以晕的宽度。采用ICP-MS对2045份B层土壤样品进行了36种元素的分析,包括Cu、Mo、Pb、Zn、Au、As、Ag、Ni、Co、Fe和Mn。对数据集进行分析,得到统计参数,并选择Cu、Mo、Pb和Zn元素计算线性生产率和总线性生产率。利用概率图对这四个元素进行建模,根据异常光晕和背景识别和分离亚种群,包括每个亚种群的阈值。然后使用概率图建模和阈值的结果来绘制GIS中每个元素的分布,以计算线性生产率。总线性生产力表明侵蚀面为超矿石。最后,利用钻孔数据建立了Cu、Mo、Pb和Zn的三维矿体模型,并对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of the erosion level of a porphyry copper deposit using soil geochemistry
As exploration is time-consuming, costly, and risky, determination of the erosion surface of a metalliferous deposit before geophysical surveying and exploration drilling might be very helpful. Geochemical haloes can be used to determine whether the erosion surface is supra-ore or sub-ore and thus reduce the risk of exploration operations. The aim of this investigation is to determine the erosion surface of the North ROK porphyry deposit (NRPD) in northwestern British Columbia in Canada using linear productivity (LP), which is the content of an element defining the halo multiplied by the width of the halo. A total of 2045 soil samples from the B horizon were analysed using ICP-MS for 36 elements, including Cu, Mo, Pb, Zn, Au, As, Ag, Ni, Co, Fe, and Mn. The data-set was snalysed to obtain the statistical parameters and the elements Cu, Mo, Pb, and Zn were chosen to calculate the linear productivity and the total linear productivity. These four elements were modelled using probability plots to identify and separate subpopulations in terms of anomalous haloes and background, including the threshold values of each subpopulation. The results of the probability plot modelling and thresholds values were then used to map the distribution of each element in a GIS to calculate the linear productivity. The total linear productivity indicated that the erosion surface is supra-ore. Finally, a 3D orebody model of the Cu, Mo, Pb, and Zn distributions was constructed using borehole data and used to validate the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
61
审稿时长
4-8 weeks
期刊介绍: The Journal serves as a medium for the publication of high quality scientific papers. This requires that the papers that are submitted for publication are properly and fairly refereed and edited. This process will maintain the high quality of the presentation of the paper and ensure that the technical content is in line with the accepted norms of scientific integrity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信