{"title":"非局部条件下非线性抛物型方程差分格式最大范数的稳定性","authors":"M. Sapagovas, Jurij Novickij","doi":"10.15388/namc.2023.28.31562","DOIUrl":null,"url":null,"abstract":"We construct and analyze the backward Euler method for one nonlinear one-dimensional parabolic equation with nonlocal boundary condition. The main objective of this article is to investigate the stability and convergence of the difference scheme in the maximum norm. For this purpose, we use the M-matrices theory. We describe some new approach for the estimation of the error of solution and construct the majorant for it. Some conclusions and discussion of our approach are presented.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On stability in the maximum norm of difference scheme for nonlinear parabolic equation with nonlocal condition\",\"authors\":\"M. Sapagovas, Jurij Novickij\",\"doi\":\"10.15388/namc.2023.28.31562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and analyze the backward Euler method for one nonlinear one-dimensional parabolic equation with nonlocal boundary condition. The main objective of this article is to investigate the stability and convergence of the difference scheme in the maximum norm. For this purpose, we use the M-matrices theory. We describe some new approach for the estimation of the error of solution and construct the majorant for it. Some conclusions and discussion of our approach are presented.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.31562\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.31562","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On stability in the maximum norm of difference scheme for nonlinear parabolic equation with nonlocal condition
We construct and analyze the backward Euler method for one nonlinear one-dimensional parabolic equation with nonlocal boundary condition. The main objective of this article is to investigate the stability and convergence of the difference scheme in the maximum norm. For this purpose, we use the M-matrices theory. We describe some new approach for the estimation of the error of solution and construct the majorant for it. Some conclusions and discussion of our approach are presented.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.