{"title":"通过具有长短期记忆和注意机制的双向递归神经网络桥接运动中称重","authors":"Yang Wang, Zhichao Wang","doi":"10.12989/SSS.2021.27.2.241","DOIUrl":null,"url":null,"abstract":"In bridge weigh-in-motion (BWIM), dynamic bridge response is measured during traffic and used to identify overloaded vehicles. Most past studies of BWIM use mechanics-based algorithms to estimate axle weights. This research instead investigates deep learning, specifically the recurrent neural network (RNN), toward BWIM. In order to acquire the large data volume to train a RNN network that uses bridge response to estimate axle weights, a finite element bridge model is built through the commercial software package LS-DYNA. To mimic everyday traffic scenarios, tens of thousands of randomized vehicle formations are simulated, with different combinations of vehicle types, spacings, speeds, axle weights, axle distances, etc. Dynamic response from each of the randomized traffic scenarios is recorded for training the RNN. In this paper we propose a 3-stage Bidirectional RNN toward BWIM. Long short-term memory (LSTM) and attention mechanism are embedded in the BRNN to further improve the network performance. Additional test data indicates that the BRNN network achieves high accuracy in estimating axle weights, in comparison with a conventional moving force identification (MFI) method.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"27 1","pages":"241-256"},"PeriodicalIF":2.1000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism\",\"authors\":\"Yang Wang, Zhichao Wang\",\"doi\":\"10.12989/SSS.2021.27.2.241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bridge weigh-in-motion (BWIM), dynamic bridge response is measured during traffic and used to identify overloaded vehicles. Most past studies of BWIM use mechanics-based algorithms to estimate axle weights. This research instead investigates deep learning, specifically the recurrent neural network (RNN), toward BWIM. In order to acquire the large data volume to train a RNN network that uses bridge response to estimate axle weights, a finite element bridge model is built through the commercial software package LS-DYNA. To mimic everyday traffic scenarios, tens of thousands of randomized vehicle formations are simulated, with different combinations of vehicle types, spacings, speeds, axle weights, axle distances, etc. Dynamic response from each of the randomized traffic scenarios is recorded for training the RNN. In this paper we propose a 3-stage Bidirectional RNN toward BWIM. Long short-term memory (LSTM) and attention mechanism are embedded in the BRNN to further improve the network performance. Additional test data indicates that the BRNN network achieves high accuracy in estimating axle weights, in comparison with a conventional moving force identification (MFI) method.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"27 1\",\"pages\":\"241-256\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.2.241\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.2.241","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Bridge weigh-in-motion through bidirectional Recurrent Neural Network with long short-term memory and attention mechanism
In bridge weigh-in-motion (BWIM), dynamic bridge response is measured during traffic and used to identify overloaded vehicles. Most past studies of BWIM use mechanics-based algorithms to estimate axle weights. This research instead investigates deep learning, specifically the recurrent neural network (RNN), toward BWIM. In order to acquire the large data volume to train a RNN network that uses bridge response to estimate axle weights, a finite element bridge model is built through the commercial software package LS-DYNA. To mimic everyday traffic scenarios, tens of thousands of randomized vehicle formations are simulated, with different combinations of vehicle types, spacings, speeds, axle weights, axle distances, etc. Dynamic response from each of the randomized traffic scenarios is recorded for training the RNN. In this paper we propose a 3-stage Bidirectional RNN toward BWIM. Long short-term memory (LSTM) and attention mechanism are embedded in the BRNN to further improve the network performance. Additional test data indicates that the BRNN network achieves high accuracy in estimating axle weights, in comparison with a conventional moving force identification (MFI) method.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.