加权柯西问题:分数阶与整数阶

IF 0.9 4区 数学 Q2 MATHEMATICS
M. G. Morales, Z. Došlá
{"title":"加权柯西问题:分数阶与整数阶","authors":"M. G. Morales, Z. Došlá","doi":"10.1216/jie.2021.33.497","DOIUrl":null,"url":null,"abstract":"This work is devoted to the solvability of the weighted Cauchy problem for fractional differential equations of arbitrary order, considering the Riemann-Liouville derivative. We show the equivalence between the weighted Cauchy problem and the Volterra integral equation in the space of Lebesgue integrable functions. Finally, we point out some discrepancies between the solutions for fractional and integer order case.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Cauchy problem: fractional versus integer order\",\"authors\":\"M. G. Morales, Z. Došlá\",\"doi\":\"10.1216/jie.2021.33.497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the solvability of the weighted Cauchy problem for fractional differential equations of arbitrary order, considering the Riemann-Liouville derivative. We show the equivalence between the weighted Cauchy problem and the Volterra integral equation in the space of Lebesgue integrable functions. Finally, we point out some discrepancies between the solutions for fractional and integer order case.\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2021.33.497\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2021.33.497","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了考虑Riemann-Liouville导数的任意阶分数阶微分方程的加权Cauchy问题的可解性。在Lebesgue可积函数空间中,给出了加权Cauchy问题与Volterra积分方程的等价性。最后指出了分数阶解与整数阶解之间的一些差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Cauchy problem: fractional versus integer order
This work is devoted to the solvability of the weighted Cauchy problem for fractional differential equations of arbitrary order, considering the Riemann-Liouville derivative. We show the equivalence between the weighted Cauchy problem and the Volterra integral equation in the space of Lebesgue integrable functions. Finally, we point out some discrepancies between the solutions for fractional and integer order case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integral Equations and Applications
Journal of Integral Equations and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications. The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field. The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信