功能化酞菁铜和酞菁锌涂层对qcm型VOCs传感器灵敏度的影响

Masruroh Masruroh, R. Tjahjanto, Gancang Saroja, D. Santjojo
{"title":"功能化酞菁铜和酞菁锌涂层对qcm型VOCs传感器灵敏度的影响","authors":"Masruroh Masruroh, R. Tjahjanto, Gancang Saroja, D. Santjojo","doi":"10.13057/ijap.v13i1.69418","DOIUrl":null,"url":null,"abstract":"The sensitivity of a QCM-based VOCs sensor with two kinds of a metal phthalocyanine, i.e., copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) was examined for various VOCs. The sensitivity of the two metal phthalocyanine was determined by the compatibility of the overlapped metal orbitals (Cu(II) dan Zn(II)) and the corresponding VOCs. The CuPc and the ZnPc layer were deposited on the quartz crystal oscillator by a vacuum evaporation method. The frequency shift and the sensitivity of the sensors with the two functional layers were tested using 5 VOCs: formaldehyde, propanol, ethanol, toluene, and ketone. The CuPc sensor showed the highest sensitivity to formaldehyde. On the other hand, the ZnPc was highly sensitive to ethanol.","PeriodicalId":31930,"journal":{"name":"Indonesian Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized Copper Phthalocyanine and Zinc Phthalocyanine as a Coating Layer on the Sensitivity of QCM-Based VOCs Sensor\",\"authors\":\"Masruroh Masruroh, R. Tjahjanto, Gancang Saroja, D. Santjojo\",\"doi\":\"10.13057/ijap.v13i1.69418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensitivity of a QCM-based VOCs sensor with two kinds of a metal phthalocyanine, i.e., copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) was examined for various VOCs. The sensitivity of the two metal phthalocyanine was determined by the compatibility of the overlapped metal orbitals (Cu(II) dan Zn(II)) and the corresponding VOCs. The CuPc and the ZnPc layer were deposited on the quartz crystal oscillator by a vacuum evaporation method. The frequency shift and the sensitivity of the sensors with the two functional layers were tested using 5 VOCs: formaldehyde, propanol, ethanol, toluene, and ketone. The CuPc sensor showed the highest sensitivity to formaldehyde. On the other hand, the ZnPc was highly sensitive to ethanol.\",\"PeriodicalId\":31930,\"journal\":{\"name\":\"Indonesian Journal of Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13057/ijap.v13i1.69418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijap.v13i1.69418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了含有两种金属酞菁,即铜酞菁(CuPc)和锌酞菁(ZnPc)的基于QCM的VOC传感器对各种VOC的灵敏度。两种金属酞菁的灵敏度通过重叠金属轨道(Cu(II)和Zn(II))与相应VOC的相容性来确定。通过真空蒸发法在石英晶体振荡器上沉积CuPc和ZnPc层。使用5种挥发性有机物:甲醛、丙醇、乙醇、甲苯和酮,测试了具有两个功能层的传感器的频移和灵敏度。CuPc传感器对甲醛的敏感性最高。另一方面,ZnPc对乙醇高度敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functionalized Copper Phthalocyanine and Zinc Phthalocyanine as a Coating Layer on the Sensitivity of QCM-Based VOCs Sensor
The sensitivity of a QCM-based VOCs sensor with two kinds of a metal phthalocyanine, i.e., copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) was examined for various VOCs. The sensitivity of the two metal phthalocyanine was determined by the compatibility of the overlapped metal orbitals (Cu(II) dan Zn(II)) and the corresponding VOCs. The CuPc and the ZnPc layer were deposited on the quartz crystal oscillator by a vacuum evaporation method. The frequency shift and the sensitivity of the sensors with the two functional layers were tested using 5 VOCs: formaldehyde, propanol, ethanol, toluene, and ketone. The CuPc sensor showed the highest sensitivity to formaldehyde. On the other hand, the ZnPc was highly sensitive to ethanol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
28
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信