基于注意机制卷积神经网络的CT肺结节检测

Q2 Computer Science
Khai Dinh Lai, T. Nguyen, T. Le
{"title":"基于注意机制卷积神经网络的CT肺结节检测","authors":"Khai Dinh Lai, T. Nguyen, T. Le","doi":"10.33166/AETIC.2021.02.007","DOIUrl":null,"url":null,"abstract":"The development of Computer-aided diagnosis (CAD) systems for automatic lung nodule detection through thoracic computed tomography (CT) scans has been an active area of research in recent years. Lung Nodule Analysis 2016 (LUNA16 challenge) encourages researchers to suggest a variety of successful nodule detection algorithms based on two key stages (1) candidates detection, (2) false-positive reduction. In the scope of this paper, a new convolutional neural network (CNN) architecture is proposed to efficiently solve the second challenge of LUNA16. Specifically, we find that typical CNN models pay little attention to the characteristics of input data, in order to address this constraint, we apply the attention-mechanism: propose a technique to attach Squeeze and Excitation-Block (SE-Block) after each convolution layer of CNN to emphasize important feature maps related to the characteristics of the input image - forming Attention sub-Convnet. The new CNN architecture is suggested by connecting the Attention sub-Convnets. In addition, we also analyze the selection of triplet loss or softmax loss functions to boost the rating performance of the proposed CNN. From the study, this is agreed to select softmax loss during the CNN training phase and triplet loss for the testing phase. Our suggested CNN is used to minimize the number of redundant candidates in order to improve the efficiency of false-positive reduction with the LUNA database. The results obtained in comparison to the previous models indicate the feasibility of the proposed model.","PeriodicalId":36440,"journal":{"name":"Annals of Emerging Technologies in Computing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detection of Lung Nodules on CT Images based on the Convolutional Neural Network with Attention Mechanism\",\"authors\":\"Khai Dinh Lai, T. Nguyen, T. Le\",\"doi\":\"10.33166/AETIC.2021.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of Computer-aided diagnosis (CAD) systems for automatic lung nodule detection through thoracic computed tomography (CT) scans has been an active area of research in recent years. Lung Nodule Analysis 2016 (LUNA16 challenge) encourages researchers to suggest a variety of successful nodule detection algorithms based on two key stages (1) candidates detection, (2) false-positive reduction. In the scope of this paper, a new convolutional neural network (CNN) architecture is proposed to efficiently solve the second challenge of LUNA16. Specifically, we find that typical CNN models pay little attention to the characteristics of input data, in order to address this constraint, we apply the attention-mechanism: propose a technique to attach Squeeze and Excitation-Block (SE-Block) after each convolution layer of CNN to emphasize important feature maps related to the characteristics of the input image - forming Attention sub-Convnet. The new CNN architecture is suggested by connecting the Attention sub-Convnets. In addition, we also analyze the selection of triplet loss or softmax loss functions to boost the rating performance of the proposed CNN. From the study, this is agreed to select softmax loss during the CNN training phase and triplet loss for the testing phase. Our suggested CNN is used to minimize the number of redundant candidates in order to improve the efficiency of false-positive reduction with the LUNA database. The results obtained in comparison to the previous models indicate the feasibility of the proposed model.\",\"PeriodicalId\":36440,\"journal\":{\"name\":\"Annals of Emerging Technologies in Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Emerging Technologies in Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33166/AETIC.2021.02.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Emerging Technologies in Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33166/AETIC.2021.02.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

摘要

通过胸部计算机断层扫描(CT)自动检测肺结节的计算机辅助诊断(CAD)系统的开发是近年来研究的一个活跃领域。肺结节分析2016 (LUNA16挑战赛)鼓励研究人员基于两个关键阶段提出各种成功的结节检测算法(1)候选物检测(2)假阳性降低。在本文的范围内,提出了一种新的卷积神经网络(CNN)架构来有效地解决LUNA16的第二次挑战。具体来说,我们发现典型的CNN模型很少关注输入数据的特征,为了解决这一约束,我们应用了注意机制:提出了一种技术,在CNN的每个卷积层之后附加挤压和激励块(SE-Block),以强调与输入图像形成注意子卷积网络的特征相关的重要特征映射。通过连接注意力子convnets,提出了新的CNN架构。此外,我们还分析了三重损失或softmax损失函数的选择,以提高所提出的CNN的评级性能。从研究中,我们同意在CNN训练阶段选择softmax loss,在测试阶段选择triplet loss。我们建议使用CNN最小化冗余候选者的数量,以提高LUNA数据库的误报降低效率。与以往模型的比较结果表明了所提模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Lung Nodules on CT Images based on the Convolutional Neural Network with Attention Mechanism
The development of Computer-aided diagnosis (CAD) systems for automatic lung nodule detection through thoracic computed tomography (CT) scans has been an active area of research in recent years. Lung Nodule Analysis 2016 (LUNA16 challenge) encourages researchers to suggest a variety of successful nodule detection algorithms based on two key stages (1) candidates detection, (2) false-positive reduction. In the scope of this paper, a new convolutional neural network (CNN) architecture is proposed to efficiently solve the second challenge of LUNA16. Specifically, we find that typical CNN models pay little attention to the characteristics of input data, in order to address this constraint, we apply the attention-mechanism: propose a technique to attach Squeeze and Excitation-Block (SE-Block) after each convolution layer of CNN to emphasize important feature maps related to the characteristics of the input image - forming Attention sub-Convnet. The new CNN architecture is suggested by connecting the Attention sub-Convnets. In addition, we also analyze the selection of triplet loss or softmax loss functions to boost the rating performance of the proposed CNN. From the study, this is agreed to select softmax loss during the CNN training phase and triplet loss for the testing phase. Our suggested CNN is used to minimize the number of redundant candidates in order to improve the efficiency of false-positive reduction with the LUNA database. The results obtained in comparison to the previous models indicate the feasibility of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Emerging Technologies in Computing
Annals of Emerging Technologies in Computing Computer Science-Computer Science (all)
CiteScore
3.50
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信