由无理性问题启发的超几何

Pub Date : 2018-02-24 DOI:10.2206/kyushujm.73.189
C. Krattenthaler, W. Zudilin
{"title":"由无理性问题启发的超几何","authors":"C. Krattenthaler, W. Zudilin","doi":"10.2206/kyushujm.73.189","DOIUrl":null,"url":null,"abstract":"We report new hypergeometric constructions of rational approximations to Catalan's constant, $\\log2$, and $\\pi^2$, their connection with already known ones, and underlying `permutation group' structures. Our principal arithmetic achievement is a new partial irrationality result for the values of Riemann's zeta function at odd integers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2206/kyushujm.73.189","citationCount":"6","resultStr":"{\"title\":\"HYPERGEOMETRY INSPIRED BY IRRATIONALITY QUESTIONS\",\"authors\":\"C. Krattenthaler, W. Zudilin\",\"doi\":\"10.2206/kyushujm.73.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report new hypergeometric constructions of rational approximations to Catalan's constant, $\\\\log2$, and $\\\\pi^2$, their connection with already known ones, and underlying `permutation group' structures. Our principal arithmetic achievement is a new partial irrationality result for the values of Riemann's zeta function at odd integers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2206/kyushujm.73.189\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.73.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.73.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们报告了加泰罗尼亚常数$\log2$和$\pi^2$的有理逼近的新超几何结构,它们与已知的结构的联系,以及潜在的“置换群”结构。我们的主要算术成果是黎曼zeta函数在奇数处值的一个新的部分无理性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
HYPERGEOMETRY INSPIRED BY IRRATIONALITY QUESTIONS
We report new hypergeometric constructions of rational approximations to Catalan's constant, $\log2$, and $\pi^2$, their connection with already known ones, and underlying `permutation group' structures. Our principal arithmetic achievement is a new partial irrationality result for the values of Riemann's zeta function at odd integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信