{"title":"熵增强资产定价模型——基于印度股市的研究","authors":"Harshit Mishra, Parama Barai","doi":"10.1007/s10690-023-09407-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the effectiveness of entropy as a proxy of aggregate market risk, in explaining the cross-section of excess returns in asset pricing model, after controlling for established factors like market excess returns, size, book to market and momentum. The analysis considers Indian firms, given that Indian capital markets are characterized by relatively thin trading and higher volatility compared to developed markets. Entropy is estimated using Shannon Entropy. Factor mimicking portfolio is constructed based on Shannon Entropy, whose returns are used as additional risk factor in Fama–French–Carhart four factor asset pricing model. Gibbons Ross Shanken-F statistic and Adjusted R<sup>2</sup> are used to judge the efficacy of this factor in capital asset pricing model. All analysis is done using built in functions of python. Market beta, size and Book-to-Market are found to impact equity returns significantly. Entropy factor also impacts equity returns, but to a lesser extent. Explanatory power of asset pricing model is found to improve after inclusion of entropy factor, as indicated by GRS-F Statistic and Adjusted R<sup>2</sup>. Entropy augmented Capital Asset Pricing Models can be used by firms to decide hurdle rate for project evaluation and by asset managers for identifying over-valued/under-valued securities. This is the first study that investigates the role of entropy in explaining asset returns, in addition to other established priced factors. This study is limited to Shannon Entropy only. Other forms of entropy may improve results further, and should be explored in future research.</p></div>","PeriodicalId":54095,"journal":{"name":"Asia-Pacific Financial Markets","volume":"31 1","pages":"81 - 99"},"PeriodicalIF":2.5000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy Augmented Asset Pricing Model: Study on Indian Stock Market\",\"authors\":\"Harshit Mishra, Parama Barai\",\"doi\":\"10.1007/s10690-023-09407-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the effectiveness of entropy as a proxy of aggregate market risk, in explaining the cross-section of excess returns in asset pricing model, after controlling for established factors like market excess returns, size, book to market and momentum. The analysis considers Indian firms, given that Indian capital markets are characterized by relatively thin trading and higher volatility compared to developed markets. Entropy is estimated using Shannon Entropy. Factor mimicking portfolio is constructed based on Shannon Entropy, whose returns are used as additional risk factor in Fama–French–Carhart four factor asset pricing model. Gibbons Ross Shanken-F statistic and Adjusted R<sup>2</sup> are used to judge the efficacy of this factor in capital asset pricing model. All analysis is done using built in functions of python. Market beta, size and Book-to-Market are found to impact equity returns significantly. Entropy factor also impacts equity returns, but to a lesser extent. Explanatory power of asset pricing model is found to improve after inclusion of entropy factor, as indicated by GRS-F Statistic and Adjusted R<sup>2</sup>. Entropy augmented Capital Asset Pricing Models can be used by firms to decide hurdle rate for project evaluation and by asset managers for identifying over-valued/under-valued securities. This is the first study that investigates the role of entropy in explaining asset returns, in addition to other established priced factors. This study is limited to Shannon Entropy only. Other forms of entropy may improve results further, and should be explored in future research.</p></div>\",\"PeriodicalId\":54095,\"journal\":{\"name\":\"Asia-Pacific Financial Markets\",\"volume\":\"31 1\",\"pages\":\"81 - 99\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Financial Markets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10690-023-09407-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Financial Markets","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10690-023-09407-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Entropy Augmented Asset Pricing Model: Study on Indian Stock Market
This study explores the effectiveness of entropy as a proxy of aggregate market risk, in explaining the cross-section of excess returns in asset pricing model, after controlling for established factors like market excess returns, size, book to market and momentum. The analysis considers Indian firms, given that Indian capital markets are characterized by relatively thin trading and higher volatility compared to developed markets. Entropy is estimated using Shannon Entropy. Factor mimicking portfolio is constructed based on Shannon Entropy, whose returns are used as additional risk factor in Fama–French–Carhart four factor asset pricing model. Gibbons Ross Shanken-F statistic and Adjusted R2 are used to judge the efficacy of this factor in capital asset pricing model. All analysis is done using built in functions of python. Market beta, size and Book-to-Market are found to impact equity returns significantly. Entropy factor also impacts equity returns, but to a lesser extent. Explanatory power of asset pricing model is found to improve after inclusion of entropy factor, as indicated by GRS-F Statistic and Adjusted R2. Entropy augmented Capital Asset Pricing Models can be used by firms to decide hurdle rate for project evaluation and by asset managers for identifying over-valued/under-valued securities. This is the first study that investigates the role of entropy in explaining asset returns, in addition to other established priced factors. This study is limited to Shannon Entropy only. Other forms of entropy may improve results further, and should be explored in future research.
期刊介绍:
The current remarkable growth in the Asia-Pacific financial markets is certain to continue. These markets are expected to play a further important role in the world capital markets for investment and risk management. In accordance with this development, Asia-Pacific Financial Markets (formerly Financial Engineering and the Japanese Markets), the official journal of the Japanese Association of Financial Econometrics and Engineering (JAFEE), is expected to provide an international forum for researchers and practitioners in academia, industry, and government, who engage in empirical and/or theoretical research into the financial markets. We invite submission of quality papers on all aspects of finance and financial engineering.
Here we interpret the term ''financial engineering'' broadly enough to cover such topics as financial time series, portfolio analysis, global asset allocation, trading strategy for investment, optimization methods, macro monetary economic analysis and pricing models for various financial assets including derivatives We stress that purely theoretical papers, as well as empirical studies that use Asia-Pacific market data, are welcome.
Officially cited as: Asia-Pac Financ Markets