具有协变和增长节点参数的网络模型的渐近理论

Pub Date : 2022-09-02 DOI:10.1007/s10463-022-00848-0
Qiuping Wang, Yuan Zhang, Ting Yan
{"title":"具有协变和增长节点参数的网络模型的渐近理论","authors":"Qiuping Wang,&nbsp;Yuan Zhang,&nbsp;Ting Yan","doi":"10.1007/s10463-022-00848-0","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic theory in network models with covariates and a growing number of node parameters\",\"authors\":\"Qiuping Wang,&nbsp;Yuan Zhang,&nbsp;Ting Yan\",\"doi\":\"10.1007/s10463-022-00848-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00848-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00848-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个通用模型,共同表征程度异质性和同质在加权,无向网络。提出了一种基于节点度和同态统计量的矩估计方法。我们用新的分析方法建立了估计量的相合性和渐近正态性。我们将我们的一般框架应用于三种应用,包括指数族和非指数族模型。综合数值研究和一个数据算例也证明了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic theory in network models with covariates and a growing number of node parameters

We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信