{"title":"具有协变和增长节点参数的网络模型的渐近理论","authors":"Qiuping Wang, Yuan Zhang, Ting Yan","doi":"10.1007/s10463-022-00848-0","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"75 2","pages":"369 - 392"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotic theory in network models with covariates and a growing number of node parameters\",\"authors\":\"Qiuping Wang, Yuan Zhang, Ting Yan\",\"doi\":\"10.1007/s10463-022-00848-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":\"75 2\",\"pages\":\"369 - 392\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00848-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00848-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic theory in network models with covariates and a growing number of node parameters
We propose a general model that jointly characterizes degree heterogeneity and homophily in weighted, undirected networks. We present a moment estimation method using node degrees and homophily statistics. We establish consistency and asymptotic normality of our estimator using novel analysis. We apply our general framework to three applications, including both exponential family and non-exponential family models. Comprehensive numerical studies and a data example also demonstrate the usefulness of our method.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.