哈纳克扩展原理在Kurzweil-Stieltjes积分中的作用

IF 0.3 Q4 MATHEMATICS
U. M. Hanung
{"title":"哈纳克扩展原理在Kurzweil-Stieltjes积分中的作用","authors":"U. M. Hanung","doi":"10.21136/mb.2023.0162-22","DOIUrl":null,"url":null,"abstract":"Various kinds of Stieltjes integrals using gauge integration have become highly popular in the field of differential equations and other applications. In the theories of integration and of ordinary differential equations, convergence theorems provide one of the most widely used tools. The Harnack extension principle, which discusses a sufficient condition for Kurzweil-Henstock integrable functions on particular subsets of $(a,b)$ to be integrable on $[a,b]$, is a key step to supply convergence theorems. The Kurzweil-Stieltjes integral reduces to the Kurzweil-Henstock integral whenever the integrator is an identity function. In general, if the integrator $F$ is discontinuous on $[c,d]\\subset[a,b]$, then the values of the Kurzweil-Stieltjes integrals $$\\int_c^d[dF]g,\\ \\int_{[c,d]}[dF]g,\\ \\int_{[c,d)}[dF]g,\\ \\int_{(c,d]}[dF]g,\\ {\\rm and}\\ \\int_{(c,d)}[dF]g$$ need not coincide. Hence, the Harnack extension principle in the Kurzweil-Henstock integral cannot be valid any longer for the Kurzweil-type Stieltjes integrals with discontinuous integrators. The new concepts of equi-integrability and equiregulatedness are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration. Moreover, the existence of the integral $\\int_a^b[dF]g$ does not (even in the case of the identity integrator) always imply the existence of the integral $\\int_{T}[dF]g$ for every subset $T$ of $[a,b]$. This follows from the well-known fact that, if e.g., $T\\subset[a,b]$ is not measurable, then the existence of the Lebesgue integral $\\int_a^b g [dt]$ does not imply that the integral $\\int_T g [dt]$ exists. Therefore, besides constructing the Harnack extension principle for the abstract Kurzweil-Stieltjes integral, the aim of this paper is also to demonstrate its role in guaranteeing the existence of the integrals $\\int_{T}[dF]g$ for arbitrary subsets $T$ of an elementary set $E$.","PeriodicalId":45392,"journal":{"name":"Mathematica Bohemica","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the Harnack extension principle in the Kurzweil-Stieltjes integral\",\"authors\":\"U. M. Hanung\",\"doi\":\"10.21136/mb.2023.0162-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various kinds of Stieltjes integrals using gauge integration have become highly popular in the field of differential equations and other applications. In the theories of integration and of ordinary differential equations, convergence theorems provide one of the most widely used tools. The Harnack extension principle, which discusses a sufficient condition for Kurzweil-Henstock integrable functions on particular subsets of $(a,b)$ to be integrable on $[a,b]$, is a key step to supply convergence theorems. The Kurzweil-Stieltjes integral reduces to the Kurzweil-Henstock integral whenever the integrator is an identity function. In general, if the integrator $F$ is discontinuous on $[c,d]\\\\subset[a,b]$, then the values of the Kurzweil-Stieltjes integrals $$\\\\int_c^d[dF]g,\\\\ \\\\int_{[c,d]}[dF]g,\\\\ \\\\int_{[c,d)}[dF]g,\\\\ \\\\int_{(c,d]}[dF]g,\\\\ {\\\\rm and}\\\\ \\\\int_{(c,d)}[dF]g$$ need not coincide. Hence, the Harnack extension principle in the Kurzweil-Henstock integral cannot be valid any longer for the Kurzweil-type Stieltjes integrals with discontinuous integrators. The new concepts of equi-integrability and equiregulatedness are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration. Moreover, the existence of the integral $\\\\int_a^b[dF]g$ does not (even in the case of the identity integrator) always imply the existence of the integral $\\\\int_{T}[dF]g$ for every subset $T$ of $[a,b]$. This follows from the well-known fact that, if e.g., $T\\\\subset[a,b]$ is not measurable, then the existence of the Lebesgue integral $\\\\int_a^b g [dt]$ does not imply that the integral $\\\\int_T g [dt]$ exists. Therefore, besides constructing the Harnack extension principle for the abstract Kurzweil-Stieltjes integral, the aim of this paper is also to demonstrate its role in guaranteeing the existence of the integrals $\\\\int_{T}[dF]g$ for arbitrary subsets $T$ of an elementary set $E$.\",\"PeriodicalId\":45392,\"journal\":{\"name\":\"Mathematica Bohemica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Bohemica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/mb.2023.0162-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Bohemica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/mb.2023.0162-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用规范积分的各种Stieltjes积分在微分方程和其他应用领域得到了广泛的应用。在积分理论和常微分方程中,收敛定理是应用最广泛的工具之一。利用Harnack扩展原理,讨论了$(a,b)$的特定子集上的Kurzweil-Henstock可积函数在$[a,b]$上可积的充分条件,是给出收敛定理的关键步骤。当积分器是恒等函数时,Kurzweil-Stieltjes积分化为Kurzweil-Henstock积分。一般来说,如果积分器$F$在$[c,d]\subset[a,b]$上是不连续的,那么Kurzweil-Stieltjes积分$$\int_c^d[dF]g,\ \int_{[c,d]}[dF]g,\ \int_{[c,d)}[dF]g,\ \int_{(c,d]}[dF]g,\ {\rm and}\ \int_{(c,d)}[dF]g$$的值不必重合。因此,对于具有不连续积分器的kurzweil型Stieltjes积分,Kurzweil-Henstock积分中的Harnack扩展原理不再有效。对于Kurzweil-Stieltjes积分的Harnack可拓原理的概念来说,等可积性和等正则性的新概念至关重要。此外,积分$\int_a^b[dF]g$的存在性并不总是意味着对于$[a,b]$的每个子集$T$的积分$\int_{T}[dF]g$的存在性(即使在单位积分器的情况下)。这源于一个众所周知的事实,即如果例如$T\subset[a,b]$不可测量,那么勒贝格积分$\int_a^b g [dt]$的存在并不意味着积分$\int_T g [dt]$的存在。因此,本文除了构造抽象Kurzweil-Stieltjes积分的Harnack可拓原理外,还证明了它在保证初等集合$E$的任意子集$T$的积分$\int_{T}[dF]g$存在性方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
Various kinds of Stieltjes integrals using gauge integration have become highly popular in the field of differential equations and other applications. In the theories of integration and of ordinary differential equations, convergence theorems provide one of the most widely used tools. The Harnack extension principle, which discusses a sufficient condition for Kurzweil-Henstock integrable functions on particular subsets of $(a,b)$ to be integrable on $[a,b]$, is a key step to supply convergence theorems. The Kurzweil-Stieltjes integral reduces to the Kurzweil-Henstock integral whenever the integrator is an identity function. In general, if the integrator $F$ is discontinuous on $[c,d]\subset[a,b]$, then the values of the Kurzweil-Stieltjes integrals $$\int_c^d[dF]g,\ \int_{[c,d]}[dF]g,\ \int_{[c,d)}[dF]g,\ \int_{(c,d]}[dF]g,\ {\rm and}\ \int_{(c,d)}[dF]g$$ need not coincide. Hence, the Harnack extension principle in the Kurzweil-Henstock integral cannot be valid any longer for the Kurzweil-type Stieltjes integrals with discontinuous integrators. The new concepts of equi-integrability and equiregulatedness are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration. Moreover, the existence of the integral $\int_a^b[dF]g$ does not (even in the case of the identity integrator) always imply the existence of the integral $\int_{T}[dF]g$ for every subset $T$ of $[a,b]$. This follows from the well-known fact that, if e.g., $T\subset[a,b]$ is not measurable, then the existence of the Lebesgue integral $\int_a^b g [dt]$ does not imply that the integral $\int_T g [dt]$ exists. Therefore, besides constructing the Harnack extension principle for the abstract Kurzweil-Stieltjes integral, the aim of this paper is also to demonstrate its role in guaranteeing the existence of the integrals $\int_{T}[dF]g$ for arbitrary subsets $T$ of an elementary set $E$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Bohemica
Mathematica Bohemica MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信