沿图边的和、积和比

Pub Date : 2018-02-18 DOI:10.5565/publmat6412006
N. Alon, I. Ruzsa, J. Solymosi
{"title":"沿图边的和、积和比","authors":"N. Alon, I. Ruzsa, J. Solymosi","doi":"10.5565/publmat6412006","DOIUrl":null,"url":null,"abstract":"In their seminal paper Erd\\H{o}s and Szemer\\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\\H{o}s-Szemer\\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sums, products, and ratios along the edges of a graph\",\"authors\":\"N. Alon, I. Ruzsa, J. Solymosi\",\"doi\":\"10.5565/publmat6412006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their seminal paper Erd\\\\H{o}s and Szemer\\\\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\\\\H{o}s-Szemer\\\\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6412006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6412006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在他们的开创性论文Erd\H{o}s和Szemer\ edi中,提出了关于整数的和集和积集大小的猜想。他们猜想的最强形式是关于图边的和和积。在本文中,我们证明了Erd\H{o} - szemer \ edi猜想的这种强形式是不成立的。给出了沿图边的集合、积集和比集的基数的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sums, products, and ratios along the edges of a graph
In their seminal paper Erd\H{o}s and Szemer\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\H{o}s-Szemer\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信