{"title":"沿图边的和、积和比","authors":"N. Alon, I. Ruzsa, J. Solymosi","doi":"10.5565/publmat6412006","DOIUrl":null,"url":null,"abstract":"In their seminal paper Erd\\H{o}s and Szemer\\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\\H{o}s-Szemer\\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Sums, products, and ratios along the edges of a graph\",\"authors\":\"N. Alon, I. Ruzsa, J. Solymosi\",\"doi\":\"10.5565/publmat6412006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their seminal paper Erd\\\\H{o}s and Szemer\\\\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\\\\H{o}s-Szemer\\\\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.\",\"PeriodicalId\":54531,\"journal\":{\"name\":\"Publicacions Matematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicacions Matematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6412006\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6412006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sums, products, and ratios along the edges of a graph
In their seminal paper Erd\H{o}s and Szemer\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\H{o}s-Szemer\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.