地震事件分类的归一化效应分析

IF 0.2 Q4 ACOUSTICS
Shou Zhang, Bonhwa Ku, Hanseok Ko
{"title":"地震事件分类的归一化效应分析","authors":"Shou Zhang, Bonhwa Ku, Hanseok Ko","doi":"10.7776/ASK.2021.40.2.130","DOIUrl":null,"url":null,"abstract":"This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks , but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"40 1","pages":"130-138"},"PeriodicalIF":0.2000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of normalization effect for earthquake events classification\",\"authors\":\"Shou Zhang, Bonhwa Ku, Hanseok Ko\",\"doi\":\"10.7776/ASK.2021.40.2.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks , but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.\",\"PeriodicalId\":42689,\"journal\":{\"name\":\"Journal of the Acoustical Society of Korea\",\"volume\":\"40 1\",\"pages\":\"130-138\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of Korea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7776/ASK.2021.40.2.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2021.40.2.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将各种归一化应用于卷积神经网络(CNN)地震事件分类的有效结构。归一化技术不仅可以提高神经网络的学习速度,而且可以显示出对噪声的鲁棒性。本文分析了输入数据归一化和隐层归一化对地震事件分类深度学习模型的影响。此外,根据应用的隐藏层的结构,通过各种实验推导出了一个有效的模型。各种实验的结果表明,将输入数据归一化和权重归一化应用于第一个隐藏层的模型显示出最稳定的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of normalization effect for earthquake events classification
This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks , but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
50.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信