用量程法数值研究长梁比对船舶阻力的影响

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE
T. Le, Nguyen Duy Anh, T. Tu, Nguyen Thi Ngoc Hoa, Vu Minh Ngoc
{"title":"用量程法数值研究长梁比对船舶阻力的影响","authors":"T. Le, Nguyen Duy Anh, T. Tu, Nguyen Thi Ngoc Hoa, Vu Minh Ngoc","doi":"10.2478/pomr-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract The paper discusses the length to beam (L/B) ratio effects on ship resistance at three different Froude numbers using unsteady RANSE simulation. First, the JBC ship model was used as an initial hull form for verification and validation of predicted ship resistance results with measured data, and then the influence of the L/B ratio on ship resistance was carried out. Ship hull forms with different L/B ratios were produced from the initial one by using the Lackenby method. The numerical results obtained show the L/B ratio’s effect on ship resistance. Increases of the L/B ratio led to gradual reduction of the total ship resistance and vice versa. Analysis of the changing of the resistance components indicates that the pressure resistance changes are considerably larger than the frictional one. Finally, the paper analyses the difference in the flow field around the hull of the ship with variation of the L/B ratio to fully understand the physical phenomenon in the change of ship resistance at different L/B parameters.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"30 1","pages":"13 - 24"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Length to Beam Ratio Effects on Ship Resistance Using Ranse Method\",\"authors\":\"T. Le, Nguyen Duy Anh, T. Tu, Nguyen Thi Ngoc Hoa, Vu Minh Ngoc\",\"doi\":\"10.2478/pomr-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper discusses the length to beam (L/B) ratio effects on ship resistance at three different Froude numbers using unsteady RANSE simulation. First, the JBC ship model was used as an initial hull form for verification and validation of predicted ship resistance results with measured data, and then the influence of the L/B ratio on ship resistance was carried out. Ship hull forms with different L/B ratios were produced from the initial one by using the Lackenby method. The numerical results obtained show the L/B ratio’s effect on ship resistance. Increases of the L/B ratio led to gradual reduction of the total ship resistance and vice versa. Analysis of the changing of the resistance components indicates that the pressure resistance changes are considerably larger than the frictional one. Finally, the paper analyses the difference in the flow field around the hull of the ship with variation of the L/B ratio to fully understand the physical phenomenon in the change of ship resistance at different L/B parameters.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"30 1\",\"pages\":\"13 - 24\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文采用非定常RANSE模拟方法,讨论了三种不同弗劳德数时舰长梁比(L/B)对舰船阻力的影响。首先以JBC船舶模型作为初始船体形式,用实测数据对预测船舶阻力结果进行验证和验证,然后进行L/B比对船舶阻力的影响。采用Lackenby法,在初始模型的基础上生成了不同L/B比的船体形状。数值计算结果显示了升液比对船舶阻力的影响。L/B比的增大导致船舶总阻力的逐渐减小,反之亦然。阻力分量的变化分析表明,压力阻力的变化比摩擦阻力的变化要大得多。最后,本文分析了随着L/B比的变化,船体周围流场的变化,以充分了解不同L/B参数下船舶阻力变化的物理现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of Length to Beam Ratio Effects on Ship Resistance Using Ranse Method
Abstract The paper discusses the length to beam (L/B) ratio effects on ship resistance at three different Froude numbers using unsteady RANSE simulation. First, the JBC ship model was used as an initial hull form for verification and validation of predicted ship resistance results with measured data, and then the influence of the L/B ratio on ship resistance was carried out. Ship hull forms with different L/B ratios were produced from the initial one by using the Lackenby method. The numerical results obtained show the L/B ratio’s effect on ship resistance. Increases of the L/B ratio led to gradual reduction of the total ship resistance and vice versa. Analysis of the changing of the resistance components indicates that the pressure resistance changes are considerably larger than the frictional one. Finally, the paper analyses the difference in the flow field around the hull of the ship with variation of the L/B ratio to fully understand the physical phenomenon in the change of ship resistance at different L/B parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信