O. Hassanein, G. Sreenatha, S. Aboobacker, Shaaban Ali
{"title":"低成本自主水下航行器平台的研制","authors":"O. Hassanein, G. Sreenatha, S. Aboobacker, Shaaban Ali","doi":"10.21307/ijssis-2021-005","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the development of a low-cost autonomous underwater vehicle (AUV). For research, industrial and military underwater applications, AUVs are generally used, which modeling, system identification and control of these vehicles pose serious challenges due to the vehicles’ complex, inherently nonlinear, and time-varying dynamics. Here, the AUV is considered to have 6-DOF for the development of the electrical, electronics, power distribution, sensors, and actuators. A low-cost IMU is used along with other reasonably low-cost detectors, such as a magnetometer and a water pressure sensor for depth evaluation. This study addresses the configuration and selection of the onboard instruments required to collect data using a processing unit (PC104) based on-board data logger to record complete manoeuvring data obtained from various sensors and process it based on the experiment. Real-time validations using Hardware-in-Loop (HIL) simulations are carried out. HIL simulations help to simulate the behavior of the developed model for surge, pitch and yaw movement, and also it makes clear that the used identification methods are feasible for real time control. Real time experiments are carried out with the developed 6-DOF instrumented AUV platform in various conditions and environments to validate its dynamics identification with adaptive controller and the results are presented for surge, the control of pitch, and yaw. The results revealed that the adaptive controller can effectively control the developed AUV and show its robust properties in the real world.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":"14 1","pages":"1 - 22"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of Low Cost Autonomous Underwater Vehicle Platform\",\"authors\":\"O. Hassanein, G. Sreenatha, S. Aboobacker, Shaaban Ali\",\"doi\":\"10.21307/ijssis-2021-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents the development of a low-cost autonomous underwater vehicle (AUV). For research, industrial and military underwater applications, AUVs are generally used, which modeling, system identification and control of these vehicles pose serious challenges due to the vehicles’ complex, inherently nonlinear, and time-varying dynamics. Here, the AUV is considered to have 6-DOF for the development of the electrical, electronics, power distribution, sensors, and actuators. A low-cost IMU is used along with other reasonably low-cost detectors, such as a magnetometer and a water pressure sensor for depth evaluation. This study addresses the configuration and selection of the onboard instruments required to collect data using a processing unit (PC104) based on-board data logger to record complete manoeuvring data obtained from various sensors and process it based on the experiment. Real-time validations using Hardware-in-Loop (HIL) simulations are carried out. HIL simulations help to simulate the behavior of the developed model for surge, pitch and yaw movement, and also it makes clear that the used identification methods are feasible for real time control. Real time experiments are carried out with the developed 6-DOF instrumented AUV platform in various conditions and environments to validate its dynamics identification with adaptive controller and the results are presented for surge, the control of pitch, and yaw. The results revealed that the adaptive controller can effectively control the developed AUV and show its robust properties in the real world.\",\"PeriodicalId\":45623,\"journal\":{\"name\":\"International Journal on Smart Sensing and Intelligent Systems\",\"volume\":\"14 1\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Smart Sensing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/ijssis-2021-005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/ijssis-2021-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of Low Cost Autonomous Underwater Vehicle Platform
Abstract This paper presents the development of a low-cost autonomous underwater vehicle (AUV). For research, industrial and military underwater applications, AUVs are generally used, which modeling, system identification and control of these vehicles pose serious challenges due to the vehicles’ complex, inherently nonlinear, and time-varying dynamics. Here, the AUV is considered to have 6-DOF for the development of the electrical, electronics, power distribution, sensors, and actuators. A low-cost IMU is used along with other reasonably low-cost detectors, such as a magnetometer and a water pressure sensor for depth evaluation. This study addresses the configuration and selection of the onboard instruments required to collect data using a processing unit (PC104) based on-board data logger to record complete manoeuvring data obtained from various sensors and process it based on the experiment. Real-time validations using Hardware-in-Loop (HIL) simulations are carried out. HIL simulations help to simulate the behavior of the developed model for surge, pitch and yaw movement, and also it makes clear that the used identification methods are feasible for real time control. Real time experiments are carried out with the developed 6-DOF instrumented AUV platform in various conditions and environments to validate its dynamics identification with adaptive controller and the results are presented for surge, the control of pitch, and yaw. The results revealed that the adaptive controller can effectively control the developed AUV and show its robust properties in the real world.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity